Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,7 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
-
from transformers import CLIPModel, CLIPProcessor
|
| 3 |
-
import torch
|
| 4 |
-
import os
|
| 5 |
|
| 6 |
-
app = FastAPI(
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 12 |
-
model.eval()
|
| 13 |
-
except ImportError as e:
|
| 14 |
-
raise RuntimeError(
|
| 15 |
-
"Missing dependencies. Make sure to install 'pillow'.\nInstall using:\n\npip install pillow"
|
| 16 |
-
)
|
| 17 |
-
except Exception as e:
|
| 18 |
-
raise RuntimeError(f"Failed to load model or processor: {str(e)}")
|
| 19 |
-
|
| 20 |
-
# Load and encode sentences
|
| 21 |
-
document_path = "test.txt"
|
| 22 |
-
if not os.path.exists(document_path):
|
| 23 |
-
raise FileNotFoundError(f"❌ Document not found: {document_path}")
|
| 24 |
-
|
| 25 |
-
with open(document_path, "r", encoding="utf-8") as f:
|
| 26 |
-
sentences = [line.strip() for line in f if line.strip()]
|
| 27 |
-
|
| 28 |
-
with torch.no_grad():
|
| 29 |
-
sentence_inputs = processor(text=sentences, return_tensors="pt", padding=True, truncation=True)
|
| 30 |
-
sentence_embeddings = model.get_text_features(**sentence_inputs)
|
| 31 |
-
|
| 32 |
-
@app.get("/", tags=["Welcome"])
|
| 33 |
-
async def root():
|
| 34 |
-
return {"message": "✅ CLIP-based Document Retrieval API is Running"}
|
| 35 |
-
|
| 36 |
-
@app.get("/search", tags=["Search"])
|
| 37 |
-
async def search(
|
| 38 |
-
query: str = Query(..., description="Search text query"),
|
| 39 |
-
top_k: int = Query(5, gt=0, le=20, description="Number of top results to return (max 20)")
|
| 40 |
-
):
|
| 41 |
-
if not query.strip():
|
| 42 |
-
raise HTTPException(status_code=400, detail="Query must not be empty")
|
| 43 |
-
|
| 44 |
-
with torch.no_grad():
|
| 45 |
-
query_inputs = processor(text=[query], return_tensors="pt", padding=True, truncation=True)
|
| 46 |
-
query_embedding = model.get_text_features(**query_inputs)
|
| 47 |
-
|
| 48 |
-
# Cosine similarity
|
| 49 |
-
similarities = torch.nn.functional.cosine_similarity(query_embedding, sentence_embeddings)[0]
|
| 50 |
-
top_indices = torch.topk(similarities, k=top_k).indices
|
| 51 |
-
|
| 52 |
-
results = [{
|
| 53 |
-
"sentence": sentences[i],
|
| 54 |
-
"score": round(similarities[i].item(), 4)
|
| 55 |
-
} for i in top_indices]
|
| 56 |
-
|
| 57 |
-
return {
|
| 58 |
-
"query": query,
|
| 59 |
-
"results": results
|
| 60 |
-
}
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
app = FastAPI()
|
| 4 |
|
| 5 |
+
@app.get("/")
|
| 6 |
+
def greet_json():
|
| 7 |
+
return {"welcome": "Created!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|