Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import sys
|
|
| 7 |
import logging
|
| 8 |
import warnings
|
| 9 |
import re
|
|
|
|
| 10 |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
| 11 |
from transformers import AutoModel, AutoTokenizer
|
| 12 |
from dataclasses import dataclass
|
|
@@ -17,14 +18,14 @@ from diffusers import ZImagePipeline
|
|
| 17 |
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel
|
| 18 |
from pe import prompt_template
|
| 19 |
|
| 20 |
-
|
| 21 |
-
# ==================== Environment Variables ================================
|
| 22 |
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
|
| 23 |
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
|
| 24 |
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
|
| 25 |
-
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "
|
| 26 |
DASHSCOPE_API_KEY = os.environ.get("DASHSCOPE_API_KEY")
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
@@ -69,22 +70,43 @@ def get_resolution(resolution):
|
|
| 69 |
|
| 70 |
def load_models(model_path, enable_compile=False, attention_backend="native"):
|
| 71 |
print(f"Loading models from {model_path}...")
|
| 72 |
-
if not os.path.exists(model_path):
|
| 73 |
-
raise FileNotFoundError(f"Model directory not found: {model_path}")
|
| 74 |
-
|
| 75 |
-
vae = AutoencoderKL.from_pretrained(
|
| 76 |
-
os.path.join(model_path, "vae"),
|
| 77 |
-
torch_dtype=torch.bfloat16,
|
| 78 |
-
device_map="cuda"
|
| 79 |
-
)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
|
| 88 |
tokenizer.padding_side = "left"
|
| 89 |
|
| 90 |
if enable_compile:
|
|
@@ -108,9 +130,15 @@ def load_models(model_path, enable_compile=False, attention_backend="native"):
|
|
| 108 |
if enable_compile:
|
| 109 |
pipe.vae.disable_tiling()
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
pipe.transformer = transformer
|
| 116 |
pipe.transformer.set_attention_backend(attention_backend)
|
|
@@ -320,6 +348,7 @@ def prompt_enhance(prompt, enable_enhance):
|
|
| 320 |
except Exception as e:
|
| 321 |
return prompt, f"Error: {str(e)}"
|
| 322 |
|
|
|
|
| 323 |
def generate(prompt, resolution, seed, steps, shift, enhance):
|
| 324 |
if pipe is None:
|
| 325 |
raise gr.Error("Model not loaded.")
|
|
@@ -350,7 +379,6 @@ def generate(prompt, resolution, seed, steps, shift, enhance):
|
|
| 350 |
|
| 351 |
return image, final_prompt, str(seed)
|
| 352 |
|
| 353 |
-
# ==================== Gradio Interface ====================
|
| 354 |
init_app()
|
| 355 |
|
| 356 |
with gr.Blocks(title="Z-Image Demo") as demo:
|
|
|
|
| 7 |
import logging
|
| 8 |
import warnings
|
| 9 |
import re
|
| 10 |
+
import spaces
|
| 11 |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
| 12 |
from transformers import AutoModel, AutoTokenizer
|
| 13 |
from dataclasses import dataclass
|
|
|
|
| 18 |
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel
|
| 19 |
from pe import prompt_template
|
| 20 |
|
| 21 |
+
# ==================== Environment Variables ==================================
|
|
|
|
| 22 |
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
|
| 23 |
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
|
| 24 |
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
|
| 25 |
+
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
|
| 26 |
DASHSCOPE_API_KEY = os.environ.get("DASHSCOPE_API_KEY")
|
| 27 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 28 |
+
# =============================================================================
|
| 29 |
|
| 30 |
|
| 31 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
| 70 |
|
| 71 |
def load_models(model_path, enable_compile=False, attention_backend="native"):
|
| 72 |
print(f"Loading models from {model_path}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
use_auth_token = HF_TOKEN if HF_TOKEN else True
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(model_path):
|
| 77 |
+
vae = AutoencoderKL.from_pretrained(
|
| 78 |
+
f"{model_path}/vae",
|
| 79 |
+
torch_dtype=torch.bfloat16,
|
| 80 |
+
device_map="cuda",
|
| 81 |
+
use_auth_token=use_auth_token
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
text_encoder = AutoModel.from_pretrained(
|
| 85 |
+
f"{model_path}/text_encoder",
|
| 86 |
+
torch_dtype=torch.bfloat16,
|
| 87 |
+
device_map="cuda",
|
| 88 |
+
use_auth_token=use_auth_token
|
| 89 |
+
).eval()
|
| 90 |
+
|
| 91 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 92 |
+
f"{model_path}/tokenizer",
|
| 93 |
+
use_auth_token=use_auth_token
|
| 94 |
+
)
|
| 95 |
+
else:
|
| 96 |
+
vae = AutoencoderKL.from_pretrained(
|
| 97 |
+
os.path.join(model_path, "vae"),
|
| 98 |
+
torch_dtype=torch.bfloat16,
|
| 99 |
+
device_map="cuda"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
text_encoder = AutoModel.from_pretrained(
|
| 103 |
+
os.path.join(model_path, "text_encoder"),
|
| 104 |
+
torch_dtype=torch.bfloat16,
|
| 105 |
+
device_map="cuda",
|
| 106 |
+
).eval()
|
| 107 |
+
|
| 108 |
+
tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
|
| 109 |
|
|
|
|
| 110 |
tokenizer.padding_side = "left"
|
| 111 |
|
| 112 |
if enable_compile:
|
|
|
|
| 130 |
if enable_compile:
|
| 131 |
pipe.vae.disable_tiling()
|
| 132 |
|
| 133 |
+
if not os.path.exists(model_path):
|
| 134 |
+
transformer = ZImageTransformer2DModel.from_pretrained(
|
| 135 |
+
f"{model_path}/transformer",
|
| 136 |
+
use_auth_token=use_auth_token
|
| 137 |
+
).to("cuda", torch.bfloat16)
|
| 138 |
+
else:
|
| 139 |
+
transformer = ZImageTransformer2DModel.from_pretrained(
|
| 140 |
+
os.path.join(model_path, "transformer")
|
| 141 |
+
).to("cuda", torch.bfloat16)
|
| 142 |
|
| 143 |
pipe.transformer = transformer
|
| 144 |
pipe.transformer.set_attention_backend(attention_backend)
|
|
|
|
| 348 |
except Exception as e:
|
| 349 |
return prompt, f"Error: {str(e)}"
|
| 350 |
|
| 351 |
+
@spaces.GPU
|
| 352 |
def generate(prompt, resolution, seed, steps, shift, enhance):
|
| 353 |
if pipe is None:
|
| 354 |
raise gr.Error("Model not loaded.")
|
|
|
|
| 379 |
|
| 380 |
return image, final_prompt, str(seed)
|
| 381 |
|
|
|
|
| 382 |
init_app()
|
| 383 |
|
| 384 |
with gr.Blocks(title="Z-Image Demo") as demo:
|