Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| import re | |
| import time | |
| # Model constants | |
| CODET5_MODEL = "Salesforce/codet5-base-multi-sum" | |
| class CodeT5Summarizer: | |
| def __init__(self, device=None): | |
| """Initialize CodeT5 summarization model.""" | |
| self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu') | |
| # Initialize model and tokenizer | |
| with st.spinner("Loading CodeT5 model... this may take a minute..."): | |
| self.tokenizer = AutoTokenizer.from_pretrained(CODET5_MODEL) | |
| self.model = AutoModelForSeq2SeqLM.from_pretrained(CODET5_MODEL).to(self.device) | |
| def preprocess_code(self, code): | |
| """Clean and preprocess the Python code.""" | |
| # Remove empty lines | |
| code = re.sub(r'\n\s*\n', '\n', code) | |
| # Remove excessive comments (keeping docstrings) | |
| code_lines = [] | |
| in_docstring = False | |
| docstring_delimiter = None | |
| for line in code.split('\n'): | |
| # Check for docstring delimiters | |
| if '"""' in line or "'''" in line: | |
| delimiter = '"""' if '"""' in line else "'''" | |
| if not in_docstring: | |
| in_docstring = True | |
| docstring_delimiter = delimiter | |
| elif docstring_delimiter == delimiter: | |
| in_docstring = False | |
| docstring_delimiter = None | |
| # Keep docstrings and non-comment lines | |
| if in_docstring or not line.strip().startswith('#'): | |
| code_lines.append(line) | |
| processed_code = '\n'.join(code_lines) | |
| # Normalize whitespace | |
| processed_code = re.sub(r' +', ' ', processed_code) | |
| return processed_code | |
| def extract_functions(self, code): | |
| """Extract individual functions for summarization""" | |
| # Simple regex to find function definitions | |
| function_pattern = r'def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(.*?\).*?:' | |
| function_matches = re.finditer(function_pattern, code, re.DOTALL) | |
| functions = [] | |
| for match in function_matches: | |
| start_pos = match.start() | |
| # Find the function body | |
| function_name = match.group(1) | |
| lines = code[start_pos:].split('\n') | |
| # Skip the function definition line | |
| body_start = 1 | |
| while body_start < len(lines) and not lines[body_start].strip(): | |
| body_start += 1 | |
| if body_start < len(lines): | |
| # Get the indentation of the function body | |
| body_indent = len(lines[body_start]) - len(lines[body_start].lstrip()) | |
| # Gather all lines with at least this indentation | |
| function_body = [lines[0]] # The function definition | |
| i = 1 | |
| while i < len(lines): | |
| line = lines[i] | |
| if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'): | |
| break | |
| function_body.append(line) | |
| i += 1 | |
| function_code = '\n'.join(function_body) | |
| functions.append((function_name, function_code)) | |
| # Simple regex to find class methods | |
| class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)' | |
| class_matches = re.finditer(class_pattern, code, re.DOTALL) | |
| for match in class_matches: | |
| class_name = match.group(1) | |
| start_pos = match.start() | |
| # Find class methods using the function pattern | |
| class_code = code[start_pos:] | |
| method_matches = re.finditer(function_pattern, class_code, re.DOTALL) | |
| for method_match in method_matches: | |
| method_name = method_match.group(1) | |
| # Skip if this is not a method (i.e., it's a function outside the class) | |
| if method_match.start() > 200: # Simple heuristic to check if method is within class scope | |
| break | |
| # Get the full method code | |
| method_start = method_match.start() | |
| method_lines = class_code[method_start:].split('\n') | |
| # Skip the method definition line | |
| body_start = 1 | |
| while body_start < len(method_lines) and not method_lines[body_start].strip(): | |
| body_start += 1 | |
| if body_start < len(method_lines): | |
| # Get the indentation of the method body | |
| body_indent = len(method_lines[body_start]) - len(method_lines[body_start].lstrip()) | |
| # Gather all lines with at least this indentation | |
| method_body = [method_lines[0]] # The method definition | |
| i = 1 | |
| while i < len(method_lines): | |
| line = method_lines[i] | |
| if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'): | |
| break | |
| method_body.append(line) | |
| i += 1 | |
| method_code = '\n'.join(method_body) | |
| functions.append((f"{class_name}.{method_name}", method_code)) | |
| return functions | |
| def extract_classes(self, code): | |
| """Extract class definitions for summarization""" | |
| class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)' | |
| class_matches = re.finditer(class_pattern, code, re.DOTALL) | |
| classes = [] | |
| for match in class_matches: | |
| class_name = match.group(1) | |
| start_pos = match.start() | |
| # Extract class body | |
| class_lines = code[start_pos:].split('\n') | |
| # Skip the class definition line | |
| body_start = 1 | |
| while body_start < len(class_lines) and not class_lines[body_start].strip(): | |
| body_start += 1 | |
| if body_start < len(class_lines): | |
| # Get the indentation of the class body | |
| body_indent = len(class_lines[body_start]) - len(class_lines[body_start].lstrip()) | |
| # Gather all lines with at least this indentation | |
| class_body = [class_lines[0]] # The class definition | |
| i = 1 | |
| while i < len(class_lines): | |
| line = class_lines[i] | |
| if line.strip() and (len(line) - len(line.lstrip())) < body_indent: | |
| break | |
| class_body.append(line) | |
| i += 1 | |
| class_code = '\n'.join(class_body) | |
| classes.append((class_name, class_code)) | |
| return classes | |
| def summarize(self, code, max_length=50): | |
| """Generate summary using CodeT5.""" | |
| # Truncate input if needed | |
| max_input_length = 512 # CodeT5 typically accepts up to 512 tokens | |
| tokenized_code = self.tokenizer(code, truncation=True, max_length=max_input_length, return_tensors="pt").to(self.device) | |
| with torch.no_grad(): | |
| generated_ids = self.model.generate( | |
| tokenized_code["input_ids"], | |
| max_length=max_length, | |
| num_beams=4, | |
| early_stopping=True | |
| ) | |
| summary = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
| return summary | |
| def summarize_code(self, code, summarize_functions=True, summarize_classes=True): | |
| """ | |
| Generate full file summary and optionally function/class level summaries. | |
| Returns a dictionary with summaries. | |
| """ | |
| preprocessed_code = self.preprocess_code(code) | |
| results = { | |
| "file_summary": None, | |
| "function_summaries": {}, | |
| "class_summaries": {} | |
| } | |
| # Generate file-level summary | |
| try: | |
| file_summary = self.summarize(preprocessed_code) | |
| results["file_summary"] = file_summary | |
| except Exception as e: | |
| results["file_summary"] = f"Error generating file summary: {str(e)}" | |
| # Generate function-level summaries if requested | |
| if summarize_functions: | |
| functions = self.extract_functions(preprocessed_code) | |
| for function_name, function_code in functions: | |
| try: | |
| summary = self.summarize(function_code) | |
| results["function_summaries"][function_name] = summary | |
| except Exception as e: | |
| results["function_summaries"][function_name] = f"Error: {str(e)}" | |
| # Generate class-level summaries if requested | |
| if summarize_classes: | |
| classes = self.extract_classes(preprocessed_code) | |
| for class_name, class_code in classes: | |
| try: | |
| summary = self.summarize(class_code) | |
| results["class_summaries"][class_name] = summary | |
| except Exception as e: | |
| results["class_summaries"][class_name] = f"Error: {str(e)}" | |
| return results | |
| def main(): | |
| st.set_page_config( | |
| page_title="Python Code Summarizer", | |
| page_icon="📝", | |
| layout="wide" | |
| ) | |
| st.title("📝 Python Code Summarizer using CodeT5") | |
| st.markdown(""" | |
| Upload a Python file or paste code directly to generate summaries. | |
| This app uses CodeT5, a pretrained model for code understanding and generation. | |
| """) | |
| # Initialize session state | |
| if 'summarizer' not in st.session_state: | |
| st.session_state.summarizer = None | |
| # Load model if not already loaded | |
| if st.session_state.summarizer is None: | |
| st.session_state.summarizer = CodeT5Summarizer() | |
| # Create tabs for different input methods | |
| tab1, tab2 = st.tabs(["Upload Python File", "Paste Code"]) | |
| with tab1: | |
| uploaded_file = st.file_uploader("Choose a Python file", type=['py']) | |
| if uploaded_file is not None: | |
| code = uploaded_file.getvalue().decode('utf-8') | |
| with st.expander("View Uploaded Code", expanded=False): | |
| st.code(code, language='python') | |
| # Add summarization options | |
| st.subheader("Summarization Options") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| summarize_functions = st.checkbox("Generate function summaries", value=True) | |
| with col2: | |
| summarize_classes = st.checkbox("Generate class summaries", value=True) | |
| if st.button("Summarize Code", key="summarize_file"): | |
| with st.spinner("Generating summaries..."): | |
| start_time = time.time() | |
| summaries = st.session_state.summarizer.summarize_code( | |
| code, | |
| summarize_functions=summarize_functions, | |
| summarize_classes=summarize_classes | |
| ) | |
| end_time = time.time() | |
| # Display summaries | |
| st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!") | |
| # File summary | |
| st.subheader("File Summary") | |
| st.write(summaries["file_summary"]) | |
| # Function summaries | |
| if summarize_functions and summaries["function_summaries"]: | |
| st.subheader("Function Summaries") | |
| for func_name, summary in summaries["function_summaries"].items(): | |
| with st.expander(f"Function: {func_name}"): | |
| st.write(summary) | |
| # Class summaries | |
| if summarize_classes and summaries["class_summaries"]: | |
| st.subheader("Class Summaries") | |
| for class_name, summary in summaries["class_summaries"].items(): | |
| with st.expander(f"Class: {class_name}"): | |
| st.write(summary) | |
| with tab2: | |
| code = st.text_area("Paste Python code here", height=300) | |
| if code: | |
| # Add summarization options | |
| st.subheader("Summarization Options") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| summarize_functions = st.checkbox("Generate function summaries", value=True, key="func_paste") | |
| with col2: | |
| summarize_classes = st.checkbox("Generate class summaries", value=True, key="class_paste") | |
| if st.button("Summarize Code", key="summarize_paste"): | |
| with st.spinner("Generating summaries..."): | |
| start_time = time.time() | |
| summaries = st.session_state.summarizer.summarize_code( | |
| code, | |
| summarize_functions=summarize_functions, | |
| summarize_classes=summarize_classes | |
| ) | |
| end_time = time.time() | |
| # Display summaries | |
| st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!") | |
| # File summary | |
| st.subheader("File Summary") | |
| st.write(summaries["file_summary"]) | |
| # Function summaries | |
| if summarize_functions and summaries["function_summaries"]: | |
| st.subheader("Function Summaries") | |
| for func_name, summary in summaries["function_summaries"].items(): | |
| with st.expander(f"Function: {func_name}"): | |
| st.write(summary) | |
| # Class summaries | |
| if summarize_classes and summaries["class_summaries"]: | |
| st.subheader("Class Summaries") | |
| for class_name, summary in summaries["class_summaries"].items(): | |
| with st.expander(f"Class: {class_name}"): | |
| st.write(summary) | |
| st.markdown("---") | |
| st.markdown("### About") | |
| st.markdown(""" | |
| This app uses the CodeT5 model to generate summaries of Python code. The model is trained on a large corpus of code and documentation. | |
| **Features:** | |
| - File-level summaries | |
| - Function-level summaries | |
| - Class-level summaries | |
| **Limitations:** | |
| - Summaries may not always be accurate | |
| - Long files may be truncated | |
| - Complex code structures might not be properly understood | |
| """) | |
| if __name__ == "__main__": | |
| main() |