Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,20 @@
|
|
| 1 |
import spaces
|
| 2 |
-
import argparse
|
| 3 |
import torch
|
| 4 |
import re
|
| 5 |
import gradio as gr
|
| 6 |
from threading import Thread
|
| 7 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
model_id = "vikhyatk/moondream2"
|
| 12 |
revision = "2024-04-02"
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 14 |
moondream = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_id, trust_remote_code=True, revision=revision,
|
| 16 |
-
torch_dtype=torch.
|
|
|
|
| 17 |
)
|
| 18 |
moondream.eval()
|
| 19 |
|
|
@@ -48,7 +49,7 @@ with gr.Blocks() as demo:
|
|
| 48 |
"""
|
| 49 |
)
|
| 50 |
with gr.Row():
|
| 51 |
-
prompt = gr.Textbox(label="Input",
|
| 52 |
submit = gr.Button("Submit")
|
| 53 |
with gr.Row():
|
| 54 |
img = gr.Image(type="pil", label="Upload an Image")
|
|
|
|
| 1 |
import spaces
|
|
|
|
| 2 |
import torch
|
| 3 |
import re
|
| 4 |
import gradio as gr
|
| 5 |
from threading import Thread
|
| 6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 7 |
|
| 8 |
+
import subprocess
|
| 9 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 10 |
|
| 11 |
model_id = "vikhyatk/moondream2"
|
| 12 |
revision = "2024-04-02"
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 14 |
moondream = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_id, trust_remote_code=True, revision=revision,
|
| 16 |
+
torch_dtype=torch.bfloat16, device_map={"": "cuda"},
|
| 17 |
+
attn_implementation="flash_attention_2"
|
| 18 |
)
|
| 19 |
moondream.eval()
|
| 20 |
|
|
|
|
| 49 |
"""
|
| 50 |
)
|
| 51 |
with gr.Row():
|
| 52 |
+
prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
|
| 53 |
submit = gr.Button("Submit")
|
| 54 |
with gr.Row():
|
| 55 |
img = gr.Image(type="pil", label="Upload an Image")
|