Upload streamlit.py
Browse files- streamlit.py +109 -0
streamlit.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from tensorflow_tts.inference import TFAutoModel
|
| 6 |
+
from tensorflow_tts.inference import AutoConfig
|
| 7 |
+
from tensorflow_tts.inference import AutoProcessor
|
| 8 |
+
|
| 9 |
+
st.title("Text-to-Speech Synthesis")
|
| 10 |
+
|
| 11 |
+
# Sidebar
|
| 12 |
+
model_selection = st.sidebar.selectbox("Select Model", [
|
| 13 |
+
"Tacotron2 + MelGAN",
|
| 14 |
+
"Tacotron2 + MelGAN-STFT",
|
| 15 |
+
"Tacotron2 + MB-MelGAN",
|
| 16 |
+
"FastSpeech + MB-MelGAN",
|
| 17 |
+
"FastSpeech + MelGAN-STFT",
|
| 18 |
+
"FastSpeech + MelGAN",
|
| 19 |
+
"FastSpeech2 + MB-MelGAN",
|
| 20 |
+
"FastSpeech2 + MelGAN-STFT",
|
| 21 |
+
"FastSpeech2 + MelGAN"
|
| 22 |
+
])
|
| 23 |
+
|
| 24 |
+
input_text = st.text_area("Enter Text", value="Bill got in the habit of asking himself “Is that thought true?” And if he wasn’t absolutely certain it was, he just let it go.")
|
| 25 |
+
|
| 26 |
+
# Load models and configurations
|
| 27 |
+
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en", name="tacotron2")
|
| 28 |
+
fastspeech = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech-ljspeech-en", name="fastspeech")
|
| 29 |
+
fastspeech2 = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech2-ljspeech-en", name="fastspeech2")
|
| 30 |
+
melgan = TFAutoModel.from_pretrained("tensorspeech/tts-melgan-ljspeech-en", name="melgan")
|
| 31 |
+
melgan_stft_config = AutoConfig.from_pretrained('TensorFlowTTS/examples/melgan_stft/conf/melgan_stft.v1.yaml')
|
| 32 |
+
melgan_stft = TFAutoModel.from_pretrained(
|
| 33 |
+
config=melgan_stft_config,
|
| 34 |
+
pretrained_path="melgan.stft-2M.h5",
|
| 35 |
+
name="melgan_stft"
|
| 36 |
+
)
|
| 37 |
+
mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en", name="mb_melgan")
|
| 38 |
+
processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
|
| 39 |
+
|
| 40 |
+
def do_synthesis(input_text, text2mel_model, vocoder_model, text2mel_name, vocoder_name):
|
| 41 |
+
input_ids = processor.text_to_sequence(input_text)
|
| 42 |
+
|
| 43 |
+
if text2mel_name == "TACOTRON":
|
| 44 |
+
_, mel_outputs, _, _ = text2mel_model.inference(
|
| 45 |
+
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
| 46 |
+
tf.convert_to_tensor([len(input_ids)], tf.int32),
|
| 47 |
+
tf.convert_to_tensor([0], dtype=tf.int32)
|
| 48 |
+
)
|
| 49 |
+
elif text2mel_name == "FASTSPEECH":
|
| 50 |
+
_, mel_outputs, _ = text2mel_model.inference(
|
| 51 |
+
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
| 52 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
| 53 |
+
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
| 54 |
+
)
|
| 55 |
+
elif text2mel_name == "FASTSPEECH2":
|
| 56 |
+
_, mel_outputs, _, _, _ = text2mel_model.inference(
|
| 57 |
+
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
| 58 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
| 59 |
+
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
| 60 |
+
f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
| 61 |
+
energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
| 62 |
+
)
|
| 63 |
+
else:
|
| 64 |
+
raise ValueError("Only TACOTRON, FASTSPEECH, FASTSPEECH2 are supported on text2mel_name")
|
| 65 |
+
|
| 66 |
+
if vocoder_name == "MELGAN" or vocoder_name == "MELGAN-STFT":
|
| 67 |
+
audio = vocoder_model(mel_outputs)[0, :, 0]
|
| 68 |
+
elif vocoder_name == "MB-MELGAN":
|
| 69 |
+
audio = vocoder_model(mel_outputs)[0, :, 0]
|
| 70 |
+
else:
|
| 71 |
+
raise ValueError("Only MELGAN, MELGAN-STFT and MB_MELGAN are supported on vocoder_name")
|
| 72 |
+
|
| 73 |
+
return mel_outputs.numpy(), audio.numpy()
|
| 74 |
+
|
| 75 |
+
if st.button("Synthesize"):
|
| 76 |
+
# Perform synthesis based on selected model
|
| 77 |
+
if model_selection == "Tacotron2 + MelGAN":
|
| 78 |
+
mel_outputs, audio = do_synthesis(input_text, tacotron2, melgan, "TACOTRON", "MELGAN")
|
| 79 |
+
elif model_selection == "Tacotron2 + MelGAN-STFT":
|
| 80 |
+
mel_outputs, audio = do_synthesis(input_text, tacotron2, melgan_stft, "TACOTRON", "MELGAN-STFT")
|
| 81 |
+
elif model_selection == "Tacotron2 + MB-MelGAN":
|
| 82 |
+
mel_outputs, audio = do_synthesis(input_text, tacotron2, mb_melgan, "TACOTRON", "MB-MELGAN")
|
| 83 |
+
elif model_selection == "FastSpeech + MB-MelGAN":
|
| 84 |
+
mel_outputs, audio = do_synthesis(input_text, fastspeech, mb_melgan, "FASTSPEECH", "MB-MELGAN")
|
| 85 |
+
elif model_selection == "FastSpeech + MelGAN-STFT":
|
| 86 |
+
mel_outputs, audio = do_synthesis(input_text, fastspeech, melgan_stft, "FASTSPEECH", "MELGAN-STFT")
|
| 87 |
+
elif model_selection == "FastSpeech + MelGAN":
|
| 88 |
+
mel_outputs, audio = do_synthesis(input_text, fastspeech, melgan, "FASTSPEECH", "MELGAN")
|
| 89 |
+
elif model_selection == "FastSpeech2 + MB-MelGAN":
|
| 90 |
+
mel_outputs, audio = do_synthesis(input_text, fastspeech2, mb_melgan, "FASTSPEECH2", "MB-MELGAN")
|
| 91 |
+
elif model_selection == "FastSpeech2 + MelGAN-STFT":
|
| 92 |
+
mel_outputs, audio = do_synthesis(input_text, fastspeech2, melgan_stft, "FASTSPEECH2", "MELGAN-STFT")
|
| 93 |
+
elif model_selection == "FastSpeech2 + MelGAN":
|
| 94 |
+
mel_outputs, audio = do_synthesis(input_text, fastspeech2, melgan, "FASTSPEECH2", "MELGAN")
|
| 95 |
+
|
| 96 |
+
# Visualize mel spectrogram
|
| 97 |
+
mels = np.reshape(mel_outputs, [-1, 80])
|
| 98 |
+
fig = plt.figure(figsize=(10, 8))
|
| 99 |
+
ax1 = fig.add_subplot(311)
|
| 100 |
+
ax1.set_title(f'Predicted Mel-after-Spectrogram')
|
| 101 |
+
im = ax1.imshow(np.rot90(mels), aspect='auto', interpolation='none')
|
| 102 |
+
fig.colorbar(mappable=im, shrink=0.65, orientation='horizontal', ax=ax1)
|
| 103 |
+
st.pyplot(fig)
|
| 104 |
+
|
| 105 |
+
# Display the audio using the specified sample rate
|
| 106 |
+
st.audio(audio, format="audio/wav", sample_rate=22050, start_time=0)
|
| 107 |
+
|
| 108 |
+
if __name__ == '__main__':
|
| 109 |
+
app()
|