Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.svm import SVC
|
| 5 |
+
from sklearn.linear_model import LogisticRegression
|
| 6 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 7 |
+
from sklearn.preprocessing import LabelEncoder
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
|
| 10 |
+
from sklearn.metrics import precision_score, recall_score
|
| 11 |
+
|
| 12 |
+
def main():
|
| 13 |
+
st.title("Binary Classification Web App")
|
| 14 |
+
st.sidebar.title("Binary Classification Web App")
|
| 15 |
+
st.markdown("Are your mushroom is editable or poisionous? ")
|
| 16 |
+
st.sidebar.markdown("Are your mushroom is editable or poisionous? ")
|
| 17 |
+
|
| 18 |
+
def load_data():
|
| 19 |
+
data = pd.read_csv('/home/rhyme/Desktop/Project/mushrooms.csv')
|
| 20 |
+
label = LabelEncoder()
|
| 21 |
+
for col in data.columns:
|
| 22 |
+
data[col]= label.fit_transform(data[col])
|
| 23 |
+
|
| 24 |
+
return data
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@st.cache(persist=True)
|
| 28 |
+
def split(df):
|
| 29 |
+
y = df.type
|
| 30 |
+
x = df.drop(columns=['type'])
|
| 31 |
+
x_train , x_test, y_train,y_test = train_test_split(x,y,test_size=0.3, random_state=0)
|
| 32 |
+
return x_train,x_test, y_train,y_test
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def plot_metrics(metrics_list):
|
| 36 |
+
if 'Confusion Matrix' in metrics_list:
|
| 37 |
+
st.subheader("Confusion Matrix")
|
| 38 |
+
plot_confusion_matrix(model, x_test,y_test,display_labels=class_names)
|
| 39 |
+
st.pyplot()
|
| 40 |
+
|
| 41 |
+
if 'ROC Curve' in metrics_list:
|
| 42 |
+
st.subheader("ROC Curve")
|
| 43 |
+
plot_roc_curve(model,x_test,y_test)
|
| 44 |
+
st.pyplot()
|
| 45 |
+
|
| 46 |
+
if 'Precision-Recall Curve' in metrics_list:
|
| 47 |
+
st.subheader("Precision-Recall Curve")
|
| 48 |
+
plot_precision_recall_curve(model,x_test,y_test)
|
| 49 |
+
st.pyplot()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
df = load_data()
|
| 54 |
+
x_train, x_test, y_train, y_test = split(df)
|
| 55 |
+
class_names = ['edible', 'poisionous']
|
| 56 |
+
st.sidebar.subheader("Chosse Classifiers")
|
| 57 |
+
classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine(SVM)", "Logostics Regression", "Random Forest"))
|
| 58 |
+
|
| 59 |
+
if classifier == "Support Vector Machine(SVM)":
|
| 60 |
+
st.sidebar.subheader("Model Hyperparameters")
|
| 61 |
+
C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C')
|
| 62 |
+
kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
|
| 63 |
+
gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')
|
| 64 |
+
|
| 65 |
+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))
|
| 66 |
+
|
| 67 |
+
if st.sidebar.button("Classify", key = 'classify'):
|
| 68 |
+
st.subheader("Support Vector Machine (SVM)")
|
| 69 |
+
model = SVC(C=C,kernel=kernel, gamma=gamma)
|
| 70 |
+
model.fit(x_train,y_train)
|
| 71 |
+
accuracy = model.score(x_test,y_test)
|
| 72 |
+
y_pred = model.predict(x_test)
|
| 73 |
+
st.write("Accuracy: ",accuracy.round(2))
|
| 74 |
+
st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
|
| 75 |
+
st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
|
| 76 |
+
plot_metrics(metrics)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
if classifier == "Logostics Regression":
|
| 80 |
+
st.sidebar.subheader("Model Hyperparameters")
|
| 81 |
+
C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR')
|
| 82 |
+
max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')
|
| 83 |
+
|
| 84 |
+
# kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
|
| 85 |
+
# gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')
|
| 86 |
+
|
| 87 |
+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))
|
| 88 |
+
|
| 89 |
+
if st.sidebar.button("Classify", key = 'classify'):
|
| 90 |
+
st.subheader("Logistics Regression")
|
| 91 |
+
model = LogisticRegression(C=C,max_iter =max_iter)
|
| 92 |
+
model.fit(x_train,y_train)
|
| 93 |
+
accuracy = model.score(x_test,y_test)
|
| 94 |
+
y_pred = model.predict(x_test)
|
| 95 |
+
st.write("Accuracy: ",accuracy.round(2))
|
| 96 |
+
st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
|
| 97 |
+
st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
|
| 98 |
+
plot_metrics(metrics)
|
| 99 |
+
|
| 100 |
+
#Random Forest
|
| 101 |
+
if classifier == "Random Forest":
|
| 102 |
+
st.sidebar.subheader("Model Hyperparameters")
|
| 103 |
+
n_estimators = st.sidebar.number_input("The number of trees in the forest", 100, 500, step=10,key='n_estmators')
|
| 104 |
+
max_depth = st.sidebar.number_input("The maximum depth of the tree", 1, 20 , step=1, key='max_depth')
|
| 105 |
+
bootstrap = st.sidebar.radio("Bootstrap samples when builoding trees", ('True','False'),key='bootstrap')
|
| 106 |
+
# C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR')
|
| 107 |
+
# max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')
|
| 108 |
+
|
| 109 |
+
# kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
|
| 110 |
+
# gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')
|
| 111 |
+
|
| 112 |
+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))
|
| 113 |
+
|
| 114 |
+
if st.sidebar.button("Classify", key = 'classify'):
|
| 115 |
+
st.subheader("Random Forest")
|
| 116 |
+
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth,bootstrap=bootstrap)
|
| 117 |
+
model.fit(x_train,y_train)
|
| 118 |
+
accuracy = model.score(x_test,y_test)
|
| 119 |
+
y_pred = model.predict(x_test)
|
| 120 |
+
st.write("Accuracy: ",accuracy.round(2))
|
| 121 |
+
st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
|
| 122 |
+
st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
|
| 123 |
+
plot_metrics(metrics)
|
| 124 |
+
|
| 125 |
+
if st.sidebar.checkbox("show raw data",False):
|
| 126 |
+
st.subheader("Mushroom data Set (Classifications)")
|
| 127 |
+
st.write(df)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == '__main__':
|
| 131 |
+
main()
|
| 132 |
+
|
| 133 |
+
|