Spaces:
Sleeping
Sleeping
Krishnan Palanisami
commited on
Delete streamlit.py
Browse files- streamlit.py +0 -100
streamlit.py
DELETED
|
@@ -1,100 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import wikipedia
|
| 3 |
-
from haystack.document_stores import InMemoryDocumentStore
|
| 4 |
-
from haystack.utils import clean_wiki_text, convert_files_to_docs
|
| 5 |
-
from haystack.nodes import TfidfRetriever, FARMReader
|
| 6 |
-
from haystack.pipelines import ExtractiveQAPipeline
|
| 7 |
-
from main import print_qa, QuestionGenerator
|
| 8 |
-
|
| 9 |
-
def main():
|
| 10 |
-
# Set the Streamlit app title
|
| 11 |
-
st.title("Question Generation using Haystack and Streamlit")
|
| 12 |
-
|
| 13 |
-
# Select the input type
|
| 14 |
-
inputs = ["Input Paragraph", "Wikipedia Examples"]
|
| 15 |
-
input_type = st.selectbox("Select an input type:", inputs)
|
| 16 |
-
|
| 17 |
-
# Initialize wiki_text as an empty string
|
| 18 |
-
wiki_text = ""
|
| 19 |
-
|
| 20 |
-
# Handle different input types
|
| 21 |
-
if input_type == "Input Paragraph":
|
| 22 |
-
# Allow user to input text paragraph
|
| 23 |
-
wiki_text = st.text_area("Input paragraph:", height=200)
|
| 24 |
-
|
| 25 |
-
elif input_type == "Wikipedia Examples":
|
| 26 |
-
# Define topics for selection
|
| 27 |
-
topics = ["Deep Learning", "Machine Learning"]
|
| 28 |
-
selected_topic = st.selectbox("Select a topic:", topics)
|
| 29 |
-
|
| 30 |
-
# Retrieve Wikipedia content based on the selected topic
|
| 31 |
-
if selected_topic:
|
| 32 |
-
wiki = wikipedia.page(selected_topic)
|
| 33 |
-
wiki_text = wiki.content
|
| 34 |
-
|
| 35 |
-
# Display the retrieved Wikipedia content (optional)
|
| 36 |
-
st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)
|
| 37 |
-
|
| 38 |
-
# Preprocess the input text
|
| 39 |
-
wiki_text = clean_wiki_text(wiki_text)
|
| 40 |
-
|
| 41 |
-
# Allow user to specify the number of questions to generate
|
| 42 |
-
num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
|
| 43 |
-
|
| 44 |
-
# Allow user to specify the model to use
|
| 45 |
-
model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
|
| 46 |
-
model_name = st.selectbox("Select model:", model_options)
|
| 47 |
-
|
| 48 |
-
# Button to generate questions
|
| 49 |
-
if st.button("Generate Questions"):
|
| 50 |
-
document_store = InMemoryDocumentStore()
|
| 51 |
-
|
| 52 |
-
# Convert the preprocessed text into a document
|
| 53 |
-
document = {"content": wiki_text}
|
| 54 |
-
document_store.write_documents([document])
|
| 55 |
-
|
| 56 |
-
# Initialize a TfidfRetriever
|
| 57 |
-
retriever = TfidfRetriever(document_store=document_store)
|
| 58 |
-
|
| 59 |
-
# Initialize a FARMReader with the selected model
|
| 60 |
-
reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
|
| 61 |
-
|
| 62 |
-
# Initialize the question generation pipeline
|
| 63 |
-
pipe = ExtractiveQAPipeline(reader, retriever)
|
| 64 |
-
|
| 65 |
-
# Initialize the QuestionGenerator
|
| 66 |
-
qg = QuestionGenerator()
|
| 67 |
-
|
| 68 |
-
# Generate multiple-choice questions
|
| 69 |
-
qa_list = qg.generate(
|
| 70 |
-
wiki_text,
|
| 71 |
-
num_questions=num_questions,
|
| 72 |
-
answer_style='multiple_choice'
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
# Display the generated questions and answers
|
| 76 |
-
st.header("Generated Questions and Answers:")
|
| 77 |
-
for idx, qa in enumerate(qa_list):
|
| 78 |
-
# Display the question
|
| 79 |
-
st.write(f"Question {idx + 1}: {qa['question']}")
|
| 80 |
-
|
| 81 |
-
# Display the answer options
|
| 82 |
-
if 'answer' in qa:
|
| 83 |
-
for i, option in enumerate(qa['answer']):
|
| 84 |
-
correct_marker = "(correct)" if option["correct"] else ""
|
| 85 |
-
st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
|
| 86 |
-
|
| 87 |
-
# Add a separator after each question-answer pair
|
| 88 |
-
st.write("-" * 40)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# Run the Streamlit app
|
| 97 |
-
if __name__ == "__main__":
|
| 98 |
-
main()
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|