Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
import cv2
|
|
|
|
| 4 |
import traceback
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from transformers import SamModel, SamProcessor
|
| 7 |
|
| 8 |
|
| 9 |
-
model = SamModel.from_pretrained('facebook/sam-vit-huge').to('
|
| 10 |
processor = SamProcessor.from_pretrained('facebook/sam-vit-huge')
|
| 11 |
|
| 12 |
|
|
@@ -14,7 +16,8 @@ def set_predictor(image):
|
|
| 14 |
"""
|
| 15 |
Creates a Sam predictor object based on a given image and model.
|
| 16 |
"""
|
| 17 |
-
|
|
|
|
| 18 |
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
|
| 19 |
|
| 20 |
return [image, image_embedding, 'Done']
|
|
@@ -23,11 +26,14 @@ def set_predictor(image):
|
|
| 23 |
def get_polygon(points, image, image_embedding):
|
| 24 |
"""
|
| 25 |
Returns the points of the polygon given a bounding box and a prediction
|
| 26 |
-
made by Sam
|
| 27 |
"""
|
| 28 |
-
points = [int(w) for w in points.split(',')]
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
# pop the pixel_values as they are not neded
|
| 33 |
inputs.pop("pixel_values", None)
|
|
@@ -43,39 +49,69 @@ def get_polygon(points, image, image_embedding):
|
|
| 43 |
)
|
| 44 |
|
| 45 |
mask = masks[0].squeeze().numpy()
|
| 46 |
-
|
| 47 |
img = mask.astype(np.uint8)[0]
|
| 48 |
-
|
| 49 |
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 50 |
|
| 51 |
if len(contours) == 0:
|
| 52 |
-
return [
|
| 53 |
-
|
| 54 |
points = contours[0]
|
|
|
|
| 55 |
polygon = []
|
| 56 |
for point in points:
|
| 57 |
for x, y in point:
|
| 58 |
polygon.append([int(x), int(y)])
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
image = gr.State()
|
| 66 |
embedding = gr.State()
|
|
|
|
| 67 |
|
| 68 |
-
with gr.
|
| 69 |
input_image = gr.Image(label='Image')
|
| 70 |
-
|
| 71 |
-
predictor_button = gr.Button('Send Image')
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
predictor_button.click(
|
|
@@ -90,4 +126,17 @@ with gr.Blocks() as app:
|
|
| 90 |
[polygon, mask],
|
| 91 |
)
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import ast
|
| 3 |
import cv2
|
| 4 |
+
import torch
|
| 5 |
import traceback
|
| 6 |
import numpy as np
|
| 7 |
+
from itertools import chain
|
| 8 |
from transformers import SamModel, SamProcessor
|
| 9 |
|
| 10 |
|
| 11 |
+
model = SamModel.from_pretrained('facebook/sam-vit-huge').to('cuda')
|
| 12 |
processor = SamProcessor.from_pretrained('facebook/sam-vit-huge')
|
| 13 |
|
| 14 |
|
|
|
|
| 16 |
"""
|
| 17 |
Creates a Sam predictor object based on a given image and model.
|
| 18 |
"""
|
| 19 |
+
device = 'cuda'
|
| 20 |
+
inputs = processor(image, return_tensors='pt').to(device)
|
| 21 |
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
|
| 22 |
|
| 23 |
return [image, image_embedding, 'Done']
|
|
|
|
| 26 |
def get_polygon(points, image, image_embedding):
|
| 27 |
"""
|
| 28 |
Returns the points of the polygon given a bounding box and a prediction
|
| 29 |
+
made by Sam.
|
| 30 |
"""
|
| 31 |
+
#points = [int(w) for w in points.split(',')]
|
| 32 |
+
points = list(chain.from_iterable(points))
|
| 33 |
+
print(points)
|
| 34 |
|
| 35 |
+
device = 'cuda'
|
| 36 |
+
inputs = processor(image, input_boxes=[points], return_tensors="pt").to(device)
|
| 37 |
|
| 38 |
# pop the pixel_values as they are not neded
|
| 39 |
inputs.pop("pixel_values", None)
|
|
|
|
| 49 |
)
|
| 50 |
|
| 51 |
mask = masks[0].squeeze().numpy()
|
|
|
|
| 52 |
img = mask.astype(np.uint8)[0]
|
|
|
|
| 53 |
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 54 |
|
| 55 |
if len(contours) == 0:
|
| 56 |
+
return [], img
|
| 57 |
+
|
| 58 |
points = contours[0]
|
| 59 |
+
|
| 60 |
polygon = []
|
| 61 |
for point in points:
|
| 62 |
for x, y in point:
|
| 63 |
polygon.append([int(x), int(y)])
|
| 64 |
|
| 65 |
+
mask = np.zeros(image.shape, dtype='uint8')
|
| 66 |
+
poly = np.array(polygon)
|
| 67 |
+
cv2.fillPoly(mask, [poly], (0, 255, 0))
|
| 68 |
+
|
| 69 |
+
return polygon, mask
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def add_bbox(bbox, evt: gr.SelectData):
|
| 73 |
+
if bbox[0] == [0, 0]:
|
| 74 |
+
bbox[0] = [evt.index[0], evt.index[1]]
|
| 75 |
+
return bbox, bbox
|
| 76 |
+
|
| 77 |
+
bbox[1] = [evt.index[0], evt.index[1]]
|
| 78 |
+
return bbox, bbox
|
| 79 |
|
| 80 |
|
| 81 |
+
def clear_bbox(bbox):
|
| 82 |
+
updated_bbox = [[0, 0], [0, 0]]
|
| 83 |
+
return updated_bbox, updated_bbox
|
| 84 |
|
| 85 |
+
|
| 86 |
+
with gr.Blocks() as demo:
|
| 87 |
image = gr.State()
|
| 88 |
embedding = gr.State()
|
| 89 |
+
bbox = gr.State([[0, 0], [0, 0]])
|
| 90 |
|
| 91 |
+
with gr.Row():
|
| 92 |
input_image = gr.Image(label='Image')
|
| 93 |
+
mask = gr.Image(label='Mask')
|
|
|
|
| 94 |
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
output_status = gr.Textbox(label='Status')
|
| 98 |
+
|
| 99 |
+
with gr.Column():
|
| 100 |
+
predictor_button = gr.Button('Send Image')
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column():
|
| 104 |
+
bbox_box = gr.Textbox(label="bbox")
|
| 105 |
|
| 106 |
+
with gr.Column():
|
| 107 |
+
bbox_button = gr.Button('Clear bbox')
|
| 108 |
+
|
| 109 |
+
with gr.Row():
|
| 110 |
+
with gr.Column():
|
| 111 |
+
polygon = gr.Textbox(label='Polygon')
|
| 112 |
+
|
| 113 |
+
with gr.Column():
|
| 114 |
+
points_button = gr.Button('Send bounding box')
|
| 115 |
|
| 116 |
|
| 117 |
predictor_button.click(
|
|
|
|
| 126 |
[polygon, mask],
|
| 127 |
)
|
| 128 |
|
| 129 |
+
bbox_button.click(
|
| 130 |
+
clear_bbox,
|
| 131 |
+
bbox,
|
| 132 |
+
[bbox, bbox_box],
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
input_image.select(
|
| 136 |
+
add_bbox,
|
| 137 |
+
bbox,
|
| 138 |
+
[bbox, bbox_box]
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
demo.launch(debug=True)
|