Create Parse.py
Browse files
Parse.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
|
| 3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
| 8 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
| 9 |
+
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
model.to(device)
|
| 12 |
+
# load document image
|
| 13 |
+
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
| 14 |
+
image = dataset[2]["image"]
|
| 15 |
+
|
| 16 |
+
# prepare decoder inputs
|
| 17 |
+
task_prompt = "<s_cord-v2>"
|
| 18 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 19 |
+
|
| 20 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 21 |
+
|
| 22 |
+
outputs = model.generate(
|
| 23 |
+
pixel_values.to(device),
|
| 24 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 25 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 26 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 27 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 28 |
+
use_cache=True,
|
| 29 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 30 |
+
return_dict_in_generate=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 34 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 35 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 36 |
+
print(processor.token2json(sequence))
|
| 37 |
+
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
|
| 38 |
+
Step-by-step Document Visual Question Answering (DocVQA)
|
| 39 |
+
Copied
|
| 40 |
+
import re
|
| 41 |
+
|
| 42 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 43 |
+
from datasets import load_dataset
|
| 44 |
+
import torch
|
| 45 |
+
|
| 46 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 47 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 48 |
+
|
| 49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 50 |
+
model.to(device)
|
| 51 |
+
# load document image from the DocVQA dataset
|
| 52 |
+
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
| 53 |
+
image = dataset[0]["image"]
|
| 54 |
+
|
| 55 |
+
# prepare decoder inputs
|
| 56 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
| 57 |
+
question = "When is the coffee break?"
|
| 58 |
+
prompt = task_prompt.replace("{user_input}", question)
|
| 59 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 60 |
+
|
| 61 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 62 |
+
|
| 63 |
+
outputs = model.generate(
|
| 64 |
+
pixel_values.to(device),
|
| 65 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 66 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 67 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 68 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 69 |
+
use_cache=True,
|
| 70 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 71 |
+
return_dict_in_generate=True,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 75 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 76 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 77 |
+
print(processor.token2json(sequence))
|