Spaces:
Runtime error
Runtime error
Create other_impls.py
Browse files- other_impls.py +868 -0
other_impls.py
ADDED
|
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### This file contains impls for underlying related models (CLIP, T5, etc)
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
from transformers import CLIPTokenizer, T5TokenizerFast
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
|
| 12 |
+
#################################################################################################
|
| 13 |
+
### Core/Utility
|
| 14 |
+
#################################################################################################
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def attention(q, k, v, heads, mask=None):
|
| 18 |
+
"""Convenience wrapper around a basic attention operation"""
|
| 19 |
+
b, _, dim_head = q.shape
|
| 20 |
+
dim_head //= heads
|
| 21 |
+
q, k, v = map(lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), (q, k, v))
|
| 22 |
+
out = torch.nn.functional.scaled_dot_product_attention(
|
| 23 |
+
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
|
| 24 |
+
)
|
| 25 |
+
return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
| 26 |
+
|
| 27 |
+
class Mlp(nn.Module):
|
| 28 |
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
in_features,
|
| 33 |
+
hidden_features=None,
|
| 34 |
+
out_features=None,
|
| 35 |
+
act_layer=nn.GELU,
|
| 36 |
+
bias=True,
|
| 37 |
+
dtype=None,
|
| 38 |
+
device=None,
|
| 39 |
+
):
|
| 40 |
+
super().__init__()
|
| 41 |
+
out_features = out_features or in_features
|
| 42 |
+
hidden_features = hidden_features or in_features
|
| 43 |
+
|
| 44 |
+
self.fc1 = nn.Linear(
|
| 45 |
+
in_features, hidden_features, bias=bias, dtype=dtype, device=device
|
| 46 |
+
)
|
| 47 |
+
self.act = act_layer
|
| 48 |
+
self.fc2 = nn.Linear(
|
| 49 |
+
hidden_features, out_features, bias=bias, dtype=dtype, device=device
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
x = self.fc1(x)
|
| 54 |
+
x = self.act(x)
|
| 55 |
+
x = self.fc2(x)
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
#################################################################################################
|
| 60 |
+
### CLIP
|
| 61 |
+
#################################################################################################
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class CLIPAttention(torch.nn.Module):
|
| 65 |
+
def __init__(self, embed_dim, heads, dtype, device):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.heads = heads
|
| 68 |
+
self.q_proj = nn.Linear(
|
| 69 |
+
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
|
| 70 |
+
)
|
| 71 |
+
self.k_proj = nn.Linear(
|
| 72 |
+
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
|
| 73 |
+
)
|
| 74 |
+
self.v_proj = nn.Linear(
|
| 75 |
+
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
|
| 76 |
+
)
|
| 77 |
+
self.out_proj = nn.Linear(
|
| 78 |
+
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
def forward(self, x, mask=None):
|
| 82 |
+
q = self.q_proj(x)
|
| 83 |
+
k = self.k_proj(x)
|
| 84 |
+
v = self.v_proj(x)
|
| 85 |
+
out = attention(q, k, v, self.heads, mask)
|
| 86 |
+
return self.out_proj(out)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
ACTIVATIONS = {
|
| 90 |
+
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
| 91 |
+
"gelu": torch.nn.functional.gelu,
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class CLIPLayer(torch.nn.Module):
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
embed_dim,
|
| 99 |
+
heads,
|
| 100 |
+
intermediate_size,
|
| 101 |
+
intermediate_activation,
|
| 102 |
+
dtype,
|
| 103 |
+
device,
|
| 104 |
+
):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 107 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
|
| 108 |
+
self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 109 |
+
# self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
|
| 110 |
+
self.mlp = Mlp(
|
| 111 |
+
embed_dim,
|
| 112 |
+
intermediate_size,
|
| 113 |
+
embed_dim,
|
| 114 |
+
act_layer=ACTIVATIONS[intermediate_activation],
|
| 115 |
+
dtype=dtype,
|
| 116 |
+
device=device,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def forward(self, x, mask=None):
|
| 120 |
+
x += self.self_attn(self.layer_norm1(x), mask)
|
| 121 |
+
x += self.mlp(self.layer_norm2(x))
|
| 122 |
+
return x
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class CLIPEncoder(torch.nn.Module):
|
| 126 |
+
def __init__(
|
| 127 |
+
self,
|
| 128 |
+
num_layers,
|
| 129 |
+
embed_dim,
|
| 130 |
+
heads,
|
| 131 |
+
intermediate_size,
|
| 132 |
+
intermediate_activation,
|
| 133 |
+
dtype,
|
| 134 |
+
device,
|
| 135 |
+
):
|
| 136 |
+
super().__init__()
|
| 137 |
+
self.layers = torch.nn.ModuleList(
|
| 138 |
+
[
|
| 139 |
+
CLIPLayer(
|
| 140 |
+
embed_dim,
|
| 141 |
+
heads,
|
| 142 |
+
intermediate_size,
|
| 143 |
+
intermediate_activation,
|
| 144 |
+
dtype,
|
| 145 |
+
device,
|
| 146 |
+
)
|
| 147 |
+
for i in range(num_layers)
|
| 148 |
+
]
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
| 152 |
+
if intermediate_output is not None:
|
| 153 |
+
if intermediate_output < 0:
|
| 154 |
+
intermediate_output = len(self.layers) + intermediate_output
|
| 155 |
+
intermediate = None
|
| 156 |
+
for i, l in enumerate(self.layers):
|
| 157 |
+
x = l(x, mask)
|
| 158 |
+
if i == intermediate_output:
|
| 159 |
+
intermediate = x.clone()
|
| 160 |
+
return x, intermediate
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class CLIPEmbeddings(torch.nn.Module):
|
| 164 |
+
def __init__(
|
| 165 |
+
self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None
|
| 166 |
+
):
|
| 167 |
+
super().__init__()
|
| 168 |
+
self.token_embedding = torch.nn.Embedding(
|
| 169 |
+
vocab_size, embed_dim, dtype=dtype, device=device
|
| 170 |
+
)
|
| 171 |
+
self.position_embedding = torch.nn.Embedding(
|
| 172 |
+
num_positions, embed_dim, dtype=dtype, device=device
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
def forward(self, input_tokens):
|
| 176 |
+
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class CLIPTextModel_(torch.nn.Module):
|
| 180 |
+
def __init__(self, config_dict, dtype, device):
|
| 181 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 182 |
+
embed_dim = config_dict["hidden_size"]
|
| 183 |
+
heads = config_dict["num_attention_heads"]
|
| 184 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 185 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
| 188 |
+
self.encoder = CLIPEncoder(
|
| 189 |
+
num_layers,
|
| 190 |
+
embed_dim,
|
| 191 |
+
heads,
|
| 192 |
+
intermediate_size,
|
| 193 |
+
intermediate_activation,
|
| 194 |
+
dtype,
|
| 195 |
+
device,
|
| 196 |
+
)
|
| 197 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 198 |
+
|
| 199 |
+
def forward(
|
| 200 |
+
self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True
|
| 201 |
+
):
|
| 202 |
+
x = self.embeddings(input_tokens)
|
| 203 |
+
causal_mask = (
|
| 204 |
+
torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device)
|
| 205 |
+
.fill_(float("-inf"))
|
| 206 |
+
.triu_(1)
|
| 207 |
+
)
|
| 208 |
+
x, i = self.encoder(
|
| 209 |
+
x, mask=causal_mask, intermediate_output=intermediate_output
|
| 210 |
+
)
|
| 211 |
+
x = self.final_layer_norm(x)
|
| 212 |
+
if i is not None and final_layer_norm_intermediate:
|
| 213 |
+
i = self.final_layer_norm(i)
|
| 214 |
+
pooled_output = x[
|
| 215 |
+
torch.arange(x.shape[0], device=x.device),
|
| 216 |
+
input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),
|
| 217 |
+
]
|
| 218 |
+
return x, i, pooled_output
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class CLIPTextModel(torch.nn.Module):
|
| 222 |
+
def __init__(self, config_dict, dtype, device):
|
| 223 |
+
super().__init__()
|
| 224 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
| 225 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device)
|
| 226 |
+
embed_dim = config_dict["hidden_size"]
|
| 227 |
+
self.text_projection = nn.Linear(
|
| 228 |
+
embed_dim, embed_dim, bias=False, dtype=dtype, device=device
|
| 229 |
+
)
|
| 230 |
+
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
| 231 |
+
self.dtype = dtype
|
| 232 |
+
|
| 233 |
+
def get_input_embeddings(self):
|
| 234 |
+
return self.text_model.embeddings.token_embedding
|
| 235 |
+
|
| 236 |
+
def set_input_embeddings(self, embeddings):
|
| 237 |
+
self.text_model.embeddings.token_embedding = embeddings
|
| 238 |
+
|
| 239 |
+
def forward(self, *args, **kwargs):
|
| 240 |
+
x = self.text_model(*args, **kwargs)
|
| 241 |
+
out = self.text_projection(x[2])
|
| 242 |
+
return (x[0], x[1], out, x[2])
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def parse_parentheses(string):
|
| 246 |
+
result = []
|
| 247 |
+
current_item = ""
|
| 248 |
+
nesting_level = 0
|
| 249 |
+
for char in string:
|
| 250 |
+
if char == "(":
|
| 251 |
+
if nesting_level == 0:
|
| 252 |
+
if current_item:
|
| 253 |
+
result.append(current_item)
|
| 254 |
+
current_item = "("
|
| 255 |
+
else:
|
| 256 |
+
current_item = "("
|
| 257 |
+
else:
|
| 258 |
+
current_item += char
|
| 259 |
+
nesting_level += 1
|
| 260 |
+
elif char == ")":
|
| 261 |
+
nesting_level -= 1
|
| 262 |
+
if nesting_level == 0:
|
| 263 |
+
result.append(current_item + ")")
|
| 264 |
+
current_item = ""
|
| 265 |
+
else:
|
| 266 |
+
current_item += char
|
| 267 |
+
else:
|
| 268 |
+
current_item += char
|
| 269 |
+
if current_item:
|
| 270 |
+
result.append(current_item)
|
| 271 |
+
return result
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def token_weights(string, current_weight):
|
| 275 |
+
a = parse_parentheses(string)
|
| 276 |
+
out = []
|
| 277 |
+
for x in a:
|
| 278 |
+
weight = current_weight
|
| 279 |
+
if len(x) >= 2 and x[-1] == ")" and x[0] == "(":
|
| 280 |
+
x = x[1:-1]
|
| 281 |
+
xx = x.rfind(":")
|
| 282 |
+
weight *= 1.1
|
| 283 |
+
if xx > 0:
|
| 284 |
+
try:
|
| 285 |
+
weight = float(x[xx + 1 :])
|
| 286 |
+
x = x[:xx]
|
| 287 |
+
except:
|
| 288 |
+
pass
|
| 289 |
+
out += token_weights(x, weight)
|
| 290 |
+
else:
|
| 291 |
+
out += [(x, current_weight)]
|
| 292 |
+
return out
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def escape_important(text):
|
| 296 |
+
text = text.replace("\\)", "\0\1")
|
| 297 |
+
text = text.replace("\\(", "\0\2")
|
| 298 |
+
return text
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def unescape_important(text):
|
| 302 |
+
text = text.replace("\0\1", ")")
|
| 303 |
+
text = text.replace("\0\2", "(")
|
| 304 |
+
return text
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
class SDTokenizer:
|
| 308 |
+
def __init__(
|
| 309 |
+
self,
|
| 310 |
+
max_length=77,
|
| 311 |
+
pad_with_end=True,
|
| 312 |
+
tokenizer=None,
|
| 313 |
+
has_start_token=True,
|
| 314 |
+
pad_to_max_length=True,
|
| 315 |
+
min_length=None,
|
| 316 |
+
extra_padding_token=None,
|
| 317 |
+
):
|
| 318 |
+
self.tokenizer = tokenizer
|
| 319 |
+
self.max_length = max_length
|
| 320 |
+
self.min_length = min_length
|
| 321 |
+
|
| 322 |
+
empty = self.tokenizer("")["input_ids"]
|
| 323 |
+
if has_start_token:
|
| 324 |
+
self.tokens_start = 1
|
| 325 |
+
self.start_token = empty[0]
|
| 326 |
+
self.end_token = empty[1]
|
| 327 |
+
else:
|
| 328 |
+
self.tokens_start = 0
|
| 329 |
+
self.start_token = None
|
| 330 |
+
self.end_token = empty[0]
|
| 331 |
+
self.pad_with_end = pad_with_end
|
| 332 |
+
self.pad_to_max_length = pad_to_max_length
|
| 333 |
+
self.extra_padding_token = extra_padding_token
|
| 334 |
+
|
| 335 |
+
vocab = self.tokenizer.get_vocab()
|
| 336 |
+
self.inv_vocab = {v: k for k, v in vocab.items()}
|
| 337 |
+
self.max_word_length = 8
|
| 338 |
+
|
| 339 |
+
def tokenize_with_weights(self, text: str, return_word_ids=False):
|
| 340 |
+
"""
|
| 341 |
+
Tokenize the text, with weight values - presume 1.0 for all and ignore other features here.
|
| 342 |
+
The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3.
|
| 343 |
+
"""
|
| 344 |
+
if self.pad_with_end:
|
| 345 |
+
pad_token = self.end_token
|
| 346 |
+
else:
|
| 347 |
+
pad_token = 0
|
| 348 |
+
|
| 349 |
+
text = escape_important(text)
|
| 350 |
+
parsed_weights = token_weights(text, 1.0)
|
| 351 |
+
|
| 352 |
+
# tokenize words
|
| 353 |
+
tokens = []
|
| 354 |
+
for weighted_segment, weight in parsed_weights:
|
| 355 |
+
to_tokenize = (
|
| 356 |
+
unescape_important(weighted_segment).replace("\n", " ").split(" ")
|
| 357 |
+
)
|
| 358 |
+
to_tokenize = [x for x in to_tokenize if x != ""]
|
| 359 |
+
for word in to_tokenize:
|
| 360 |
+
# parse word
|
| 361 |
+
tokens.append(
|
| 362 |
+
[
|
| 363 |
+
(t, weight)
|
| 364 |
+
for t in self.tokenizer(word)["input_ids"][
|
| 365 |
+
self.tokens_start : -1
|
| 366 |
+
]
|
| 367 |
+
]
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
# reshape token array to CLIP input size
|
| 371 |
+
batched_tokens = []
|
| 372 |
+
batch = []
|
| 373 |
+
if self.start_token is not None:
|
| 374 |
+
batch.append((self.start_token, 1.0, 0))
|
| 375 |
+
batched_tokens.append(batch)
|
| 376 |
+
for i, t_group in enumerate(tokens):
|
| 377 |
+
# determine if we're going to try and keep the tokens in a single batch
|
| 378 |
+
is_large = len(t_group) >= self.max_word_length
|
| 379 |
+
|
| 380 |
+
while len(t_group) > 0:
|
| 381 |
+
if len(t_group) + len(batch) > self.max_length - 1:
|
| 382 |
+
remaining_length = self.max_length - len(batch) - 1
|
| 383 |
+
# break word in two and add end token
|
| 384 |
+
if is_large:
|
| 385 |
+
batch.extend(
|
| 386 |
+
[(t, w, i + 1) for t, w in t_group[:remaining_length]]
|
| 387 |
+
)
|
| 388 |
+
batch.append((self.end_token, 1.0, 0))
|
| 389 |
+
t_group = t_group[remaining_length:]
|
| 390 |
+
# add end token and pad
|
| 391 |
+
else:
|
| 392 |
+
batch.append((self.end_token, 1.0, 0))
|
| 393 |
+
if self.pad_to_max_length:
|
| 394 |
+
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
|
| 395 |
+
# start new batch
|
| 396 |
+
batch = []
|
| 397 |
+
if self.start_token is not None:
|
| 398 |
+
batch.append((self.start_token, 1.0, 0))
|
| 399 |
+
batched_tokens.append(batch)
|
| 400 |
+
else:
|
| 401 |
+
batch.extend([(t, w, i + 1) for t, w in t_group])
|
| 402 |
+
t_group = []
|
| 403 |
+
|
| 404 |
+
# pad extra padding token first befor getting to the end token
|
| 405 |
+
if self.extra_padding_token is not None:
|
| 406 |
+
batch.extend(
|
| 407 |
+
[(self.extra_padding_token, 1.0, 0)]
|
| 408 |
+
* (self.min_length - len(batch) - 1)
|
| 409 |
+
)
|
| 410 |
+
# fill last batch
|
| 411 |
+
batch.append((self.end_token, 1.0, 0))
|
| 412 |
+
if self.pad_to_max_length:
|
| 413 |
+
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
| 414 |
+
if self.min_length is not None and len(batch) < self.min_length:
|
| 415 |
+
batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch)))
|
| 416 |
+
|
| 417 |
+
if not return_word_ids:
|
| 418 |
+
batched_tokens = [[(t, w) for t, w, _ in x] for x in batched_tokens]
|
| 419 |
+
|
| 420 |
+
return batched_tokens
|
| 421 |
+
|
| 422 |
+
def untokenize(self, token_weight_pair):
|
| 423 |
+
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
class SDXLClipGTokenizer(SDTokenizer):
|
| 427 |
+
def __init__(self, tokenizer):
|
| 428 |
+
super().__init__(pad_with_end=False, tokenizer=tokenizer)
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
class SD3Tokenizer:
|
| 432 |
+
def __init__(self):
|
| 433 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
| 434 |
+
self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
|
| 435 |
+
self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
|
| 436 |
+
self.t5xxl = T5XXLTokenizer()
|
| 437 |
+
|
| 438 |
+
def tokenize_with_weights(self, text: str):
|
| 439 |
+
out = {}
|
| 440 |
+
out["l"] = self.clip_l.tokenize_with_weights(text)
|
| 441 |
+
out["g"] = self.clip_g.tokenize_with_weights(text)
|
| 442 |
+
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text[:226])
|
| 443 |
+
return out
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class ClipTokenWeightEncoder:
|
| 447 |
+
def encode_token_weights(self, token_weight_pairs):
|
| 448 |
+
tokens = list(map(lambda a: a[0], token_weight_pairs[0]))
|
| 449 |
+
out, pooled = self([tokens])
|
| 450 |
+
if pooled is not None:
|
| 451 |
+
first_pooled = pooled[0:1].cpu()
|
| 452 |
+
else:
|
| 453 |
+
first_pooled = pooled
|
| 454 |
+
output = [out[0:1]]
|
| 455 |
+
return torch.cat(output, dim=-2).cpu(), first_pooled
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
| 459 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
| 460 |
+
|
| 461 |
+
LAYERS = ["last", "pooled", "hidden"]
|
| 462 |
+
|
| 463 |
+
def __init__(
|
| 464 |
+
self,
|
| 465 |
+
device="cpu",
|
| 466 |
+
max_length=77,
|
| 467 |
+
layer="last",
|
| 468 |
+
layer_idx=None,
|
| 469 |
+
textmodel_json_config=None,
|
| 470 |
+
dtype=None,
|
| 471 |
+
model_class=CLIPTextModel,
|
| 472 |
+
special_tokens={"start": 49406, "end": 49407, "pad": 49407},
|
| 473 |
+
layer_norm_hidden_state=True,
|
| 474 |
+
return_projected_pooled=True,
|
| 475 |
+
):
|
| 476 |
+
super().__init__()
|
| 477 |
+
assert layer in self.LAYERS
|
| 478 |
+
self.transformer = model_class(textmodel_json_config, dtype, device)
|
| 479 |
+
self.num_layers = self.transformer.num_layers
|
| 480 |
+
self.max_length = max_length
|
| 481 |
+
self.transformer = self.transformer.eval()
|
| 482 |
+
for param in self.parameters():
|
| 483 |
+
param.requires_grad = False
|
| 484 |
+
self.layer = layer
|
| 485 |
+
self.layer_idx = None
|
| 486 |
+
self.special_tokens = special_tokens
|
| 487 |
+
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
| 488 |
+
self.layer_norm_hidden_state = layer_norm_hidden_state
|
| 489 |
+
self.return_projected_pooled = return_projected_pooled
|
| 490 |
+
if layer == "hidden":
|
| 491 |
+
assert layer_idx is not None
|
| 492 |
+
assert abs(layer_idx) < self.num_layers
|
| 493 |
+
self.set_clip_options({"layer": layer_idx})
|
| 494 |
+
self.options_default = (
|
| 495 |
+
self.layer,
|
| 496 |
+
self.layer_idx,
|
| 497 |
+
self.return_projected_pooled,
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
def set_clip_options(self, options):
|
| 501 |
+
layer_idx = options.get("layer", self.layer_idx)
|
| 502 |
+
self.return_projected_pooled = options.get(
|
| 503 |
+
"projected_pooled", self.return_projected_pooled
|
| 504 |
+
)
|
| 505 |
+
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
| 506 |
+
self.layer = "last"
|
| 507 |
+
else:
|
| 508 |
+
self.layer = "hidden"
|
| 509 |
+
self.layer_idx = layer_idx
|
| 510 |
+
|
| 511 |
+
def forward(self, tokens):
|
| 512 |
+
backup_embeds = self.transformer.get_input_embeddings()
|
| 513 |
+
device = backup_embeds.weight.device
|
| 514 |
+
tokens = torch.LongTensor(tokens).to(device)
|
| 515 |
+
outputs = self.transformer(
|
| 516 |
+
tokens,
|
| 517 |
+
intermediate_output=self.layer_idx,
|
| 518 |
+
final_layer_norm_intermediate=self.layer_norm_hidden_state,
|
| 519 |
+
)
|
| 520 |
+
self.transformer.set_input_embeddings(backup_embeds)
|
| 521 |
+
if self.layer == "last":
|
| 522 |
+
z = outputs[0]
|
| 523 |
+
else:
|
| 524 |
+
z = outputs[1]
|
| 525 |
+
pooled_output = None
|
| 526 |
+
if len(outputs) >= 3:
|
| 527 |
+
if (
|
| 528 |
+
not self.return_projected_pooled
|
| 529 |
+
and len(outputs) >= 4
|
| 530 |
+
and outputs[3] is not None
|
| 531 |
+
):
|
| 532 |
+
pooled_output = outputs[3].float()
|
| 533 |
+
elif outputs[2] is not None:
|
| 534 |
+
pooled_output = outputs[2].float()
|
| 535 |
+
return z.float(), pooled_output
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
class SDXLClipG(SDClipModel):
|
| 539 |
+
"""Wraps the CLIP-G model into the SD-CLIP-Model interface"""
|
| 540 |
+
|
| 541 |
+
def __init__(
|
| 542 |
+
self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None
|
| 543 |
+
):
|
| 544 |
+
if layer == "penultimate":
|
| 545 |
+
layer = "hidden"
|
| 546 |
+
layer_idx = -2
|
| 547 |
+
super().__init__(
|
| 548 |
+
device=device,
|
| 549 |
+
layer=layer,
|
| 550 |
+
layer_idx=layer_idx,
|
| 551 |
+
textmodel_json_config=config,
|
| 552 |
+
dtype=dtype,
|
| 553 |
+
special_tokens={"start": 49406, "end": 49407, "pad": 0},
|
| 554 |
+
layer_norm_hidden_state=False,
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
class T5XXLModel(SDClipModel):
|
| 559 |
+
"""Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
|
| 560 |
+
|
| 561 |
+
def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
|
| 562 |
+
super().__init__(
|
| 563 |
+
device=device,
|
| 564 |
+
layer=layer,
|
| 565 |
+
layer_idx=layer_idx,
|
| 566 |
+
textmodel_json_config=config,
|
| 567 |
+
dtype=dtype,
|
| 568 |
+
special_tokens={"end": 1, "pad": 0},
|
| 569 |
+
model_class=T5,
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
#################################################################################################
|
| 574 |
+
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
|
| 575 |
+
#################################################################################################
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
class T5XXLTokenizer(SDTokenizer):
|
| 579 |
+
"""Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
|
| 580 |
+
|
| 581 |
+
def __init__(self):
|
| 582 |
+
super().__init__(
|
| 583 |
+
pad_with_end=False,
|
| 584 |
+
tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"),
|
| 585 |
+
has_start_token=False,
|
| 586 |
+
pad_to_max_length=False,
|
| 587 |
+
max_length=99999999,
|
| 588 |
+
min_length=77,
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
class T5LayerNorm(torch.nn.Module):
|
| 593 |
+
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
|
| 594 |
+
super().__init__()
|
| 595 |
+
self.weight = torch.nn.Parameter(
|
| 596 |
+
torch.ones(hidden_size, dtype=dtype, device=device)
|
| 597 |
+
)
|
| 598 |
+
self.variance_epsilon = eps
|
| 599 |
+
|
| 600 |
+
def forward(self, x):
|
| 601 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 602 |
+
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
| 603 |
+
return self.weight.to(device=x.device, dtype=x.dtype) * x
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
class T5DenseGatedActDense(torch.nn.Module):
|
| 607 |
+
def __init__(self, model_dim, ff_dim, dtype, device):
|
| 608 |
+
super().__init__()
|
| 609 |
+
self.wi_0 = nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
|
| 610 |
+
self.wi_1 = nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
|
| 611 |
+
self.wo = nn.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
|
| 612 |
+
|
| 613 |
+
def forward(self, x):
|
| 614 |
+
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
|
| 615 |
+
hidden_linear = self.wi_1(x)
|
| 616 |
+
x = hidden_gelu * hidden_linear
|
| 617 |
+
x = self.wo(x)
|
| 618 |
+
return x
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
class T5LayerFF(torch.nn.Module):
|
| 622 |
+
def __init__(self, model_dim, ff_dim, dtype, device):
|
| 623 |
+
super().__init__()
|
| 624 |
+
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
|
| 625 |
+
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
| 626 |
+
|
| 627 |
+
def forward(self, x):
|
| 628 |
+
forwarded_states = self.layer_norm(x)
|
| 629 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
| 630 |
+
x += forwarded_states
|
| 631 |
+
return x
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
class T5Attention(torch.nn.Module):
|
| 635 |
+
def __init__(
|
| 636 |
+
self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device
|
| 637 |
+
):
|
| 638 |
+
super().__init__()
|
| 639 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
| 640 |
+
self.q = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
| 641 |
+
self.k = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
| 642 |
+
self.v = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
| 643 |
+
self.o = nn.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
|
| 644 |
+
self.num_heads = num_heads
|
| 645 |
+
self.relative_attention_bias = None
|
| 646 |
+
if relative_attention_bias:
|
| 647 |
+
self.relative_attention_num_buckets = 32
|
| 648 |
+
self.relative_attention_max_distance = 128
|
| 649 |
+
self.relative_attention_bias = torch.nn.Embedding(
|
| 650 |
+
self.relative_attention_num_buckets, self.num_heads, device=device
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
@staticmethod
|
| 654 |
+
def _relative_position_bucket(
|
| 655 |
+
relative_position, bidirectional=True, num_buckets=32, max_distance=128
|
| 656 |
+
):
|
| 657 |
+
"""
|
| 658 |
+
Adapted from Mesh Tensorflow:
|
| 659 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
| 660 |
+
|
| 661 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
| 662 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
| 663 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
| 664 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
| 665 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
| 666 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
| 667 |
+
|
| 668 |
+
Args:
|
| 669 |
+
relative_position: an int32 Tensor
|
| 670 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
| 671 |
+
num_buckets: an integer
|
| 672 |
+
max_distance: an integer
|
| 673 |
+
|
| 674 |
+
Returns:
|
| 675 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
| 676 |
+
"""
|
| 677 |
+
relative_buckets = 0
|
| 678 |
+
if bidirectional:
|
| 679 |
+
num_buckets //= 2
|
| 680 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
| 681 |
+
relative_position = torch.abs(relative_position)
|
| 682 |
+
else:
|
| 683 |
+
relative_position = -torch.min(
|
| 684 |
+
relative_position, torch.zeros_like(relative_position)
|
| 685 |
+
)
|
| 686 |
+
# now relative_position is in the range [0, inf)
|
| 687 |
+
# half of the buckets are for exact increments in positions
|
| 688 |
+
max_exact = num_buckets // 2
|
| 689 |
+
is_small = relative_position < max_exact
|
| 690 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
| 691 |
+
relative_position_if_large = max_exact + (
|
| 692 |
+
torch.log(relative_position.float() / max_exact)
|
| 693 |
+
/ math.log(max_distance / max_exact)
|
| 694 |
+
* (num_buckets - max_exact)
|
| 695 |
+
).to(torch.long)
|
| 696 |
+
relative_position_if_large = torch.min(
|
| 697 |
+
relative_position_if_large,
|
| 698 |
+
torch.full_like(relative_position_if_large, num_buckets - 1),
|
| 699 |
+
)
|
| 700 |
+
relative_buckets += torch.where(
|
| 701 |
+
is_small, relative_position, relative_position_if_large
|
| 702 |
+
)
|
| 703 |
+
return relative_buckets
|
| 704 |
+
|
| 705 |
+
def compute_bias(self, query_length, key_length, device):
|
| 706 |
+
"""Compute binned relative position bias"""
|
| 707 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[
|
| 708 |
+
:, None
|
| 709 |
+
]
|
| 710 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[
|
| 711 |
+
None, :
|
| 712 |
+
]
|
| 713 |
+
relative_position = (
|
| 714 |
+
memory_position - context_position
|
| 715 |
+
) # shape (query_length, key_length)
|
| 716 |
+
relative_position_bucket = self._relative_position_bucket(
|
| 717 |
+
relative_position, # shape (query_length, key_length)
|
| 718 |
+
bidirectional=True,
|
| 719 |
+
num_buckets=self.relative_attention_num_buckets,
|
| 720 |
+
max_distance=self.relative_attention_max_distance,
|
| 721 |
+
)
|
| 722 |
+
values = self.relative_attention_bias(
|
| 723 |
+
relative_position_bucket
|
| 724 |
+
) # shape (query_length, key_length, num_heads)
|
| 725 |
+
values = values.permute([2, 0, 1]).unsqueeze(
|
| 726 |
+
0
|
| 727 |
+
) # shape (1, num_heads, query_length, key_length)
|
| 728 |
+
return values
|
| 729 |
+
|
| 730 |
+
def forward(self, x, past_bias=None):
|
| 731 |
+
q = self.q(x)
|
| 732 |
+
k = self.k(x)
|
| 733 |
+
v = self.v(x)
|
| 734 |
+
if self.relative_attention_bias is not None:
|
| 735 |
+
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
|
| 736 |
+
if past_bias is not None:
|
| 737 |
+
mask = past_bias
|
| 738 |
+
out = attention(
|
| 739 |
+
q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask
|
| 740 |
+
)
|
| 741 |
+
return self.o(out), past_bias
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
class T5LayerSelfAttention(torch.nn.Module):
|
| 745 |
+
def __init__(
|
| 746 |
+
self,
|
| 747 |
+
model_dim,
|
| 748 |
+
inner_dim,
|
| 749 |
+
ff_dim,
|
| 750 |
+
num_heads,
|
| 751 |
+
relative_attention_bias,
|
| 752 |
+
dtype,
|
| 753 |
+
device,
|
| 754 |
+
):
|
| 755 |
+
super().__init__()
|
| 756 |
+
self.SelfAttention = T5Attention(
|
| 757 |
+
model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device
|
| 758 |
+
)
|
| 759 |
+
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
| 760 |
+
|
| 761 |
+
def forward(self, x, past_bias=None):
|
| 762 |
+
output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
|
| 763 |
+
x += output
|
| 764 |
+
return x, past_bias
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
class T5Block(torch.nn.Module):
|
| 768 |
+
def __init__(
|
| 769 |
+
self,
|
| 770 |
+
model_dim,
|
| 771 |
+
inner_dim,
|
| 772 |
+
ff_dim,
|
| 773 |
+
num_heads,
|
| 774 |
+
relative_attention_bias,
|
| 775 |
+
dtype,
|
| 776 |
+
device,
|
| 777 |
+
):
|
| 778 |
+
super().__init__()
|
| 779 |
+
self.layer = torch.nn.ModuleList()
|
| 780 |
+
self.layer.append(
|
| 781 |
+
T5LayerSelfAttention(
|
| 782 |
+
model_dim,
|
| 783 |
+
inner_dim,
|
| 784 |
+
ff_dim,
|
| 785 |
+
num_heads,
|
| 786 |
+
relative_attention_bias,
|
| 787 |
+
dtype,
|
| 788 |
+
device,
|
| 789 |
+
)
|
| 790 |
+
)
|
| 791 |
+
self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
|
| 792 |
+
|
| 793 |
+
def forward(self, x, past_bias=None):
|
| 794 |
+
x, past_bias = self.layer[0](x, past_bias)
|
| 795 |
+
x = self.layer[-1](x)
|
| 796 |
+
return x, past_bias
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
class T5Stack(torch.nn.Module):
|
| 800 |
+
def __init__(
|
| 801 |
+
self,
|
| 802 |
+
num_layers,
|
| 803 |
+
model_dim,
|
| 804 |
+
inner_dim,
|
| 805 |
+
ff_dim,
|
| 806 |
+
num_heads,
|
| 807 |
+
vocab_size,
|
| 808 |
+
dtype,
|
| 809 |
+
device,
|
| 810 |
+
):
|
| 811 |
+
super().__init__()
|
| 812 |
+
self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
|
| 813 |
+
self.block = torch.nn.ModuleList(
|
| 814 |
+
[
|
| 815 |
+
T5Block(
|
| 816 |
+
model_dim,
|
| 817 |
+
inner_dim,
|
| 818 |
+
ff_dim,
|
| 819 |
+
num_heads,
|
| 820 |
+
relative_attention_bias=(i == 0),
|
| 821 |
+
dtype=dtype,
|
| 822 |
+
device=device,
|
| 823 |
+
)
|
| 824 |
+
for i in range(num_layers)
|
| 825 |
+
]
|
| 826 |
+
)
|
| 827 |
+
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
| 828 |
+
|
| 829 |
+
def forward(
|
| 830 |
+
self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True
|
| 831 |
+
):
|
| 832 |
+
intermediate = None
|
| 833 |
+
x = self.embed_tokens(input_ids)
|
| 834 |
+
past_bias = None
|
| 835 |
+
for i, l in enumerate(self.block):
|
| 836 |
+
x, past_bias = l(x, past_bias)
|
| 837 |
+
if i == intermediate_output:
|
| 838 |
+
intermediate = x.clone()
|
| 839 |
+
x = self.final_layer_norm(x)
|
| 840 |
+
if intermediate is not None and final_layer_norm_intermediate:
|
| 841 |
+
intermediate = self.final_layer_norm(intermediate)
|
| 842 |
+
return x, intermediate
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
class T5(torch.nn.Module):
|
| 846 |
+
def __init__(self, config_dict, dtype, device):
|
| 847 |
+
super().__init__()
|
| 848 |
+
self.num_layers = config_dict["num_layers"]
|
| 849 |
+
self.encoder = T5Stack(
|
| 850 |
+
self.num_layers,
|
| 851 |
+
config_dict["d_model"],
|
| 852 |
+
config_dict["d_model"],
|
| 853 |
+
config_dict["d_ff"],
|
| 854 |
+
config_dict["num_heads"],
|
| 855 |
+
config_dict["vocab_size"],
|
| 856 |
+
dtype,
|
| 857 |
+
device,
|
| 858 |
+
)
|
| 859 |
+
self.dtype = dtype
|
| 860 |
+
|
| 861 |
+
def get_input_embeddings(self):
|
| 862 |
+
return self.encoder.embed_tokens
|
| 863 |
+
|
| 864 |
+
def set_input_embeddings(self, embeddings):
|
| 865 |
+
self.encoder.embed_tokens = embeddings
|
| 866 |
+
|
| 867 |
+
def forward(self, *args, **kwargs):
|
| 868 |
+
return self.encoder(*args, **kwargs)
|