wangpangintsig commited on
Commit
c219d70
·
verified ·
1 Parent(s): c8a69ff

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +143 -0
app.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from other_impls import SD3Tokenizer, SDClipModel, SDXLClipG, T5XXLModel
2
+ from safetensors import safe_open
3
+ from huggingface_hub import hf_hub_download
4
+
5
+
6
+ def load_into(ckpt, model, prefix, device, dtype=None, remap=None):
7
+ """Just a debugging-friendly hack to apply the weights in a safetensors file to the pytorch module."""
8
+ for key in ckpt.keys():
9
+ model_key = key
10
+ if remap is not None and key in remap:
11
+ model_key = remap[key]
12
+ if model_key.startswith(prefix) and not model_key.startswith("loss."):
13
+ path = model_key[len(prefix) :].split(".")
14
+ obj = model
15
+ for p in path:
16
+ if obj is list:
17
+ obj = obj[int(p)]
18
+ else:
19
+ obj = getattr(obj, p, None)
20
+ if obj is None:
21
+ print(
22
+ f"Skipping key '{model_key}' in safetensors file as '{p}' does not exist in python model"
23
+ )
24
+ break
25
+ if obj is None:
26
+ continue
27
+ try:
28
+ tensor = ckpt.get_tensor(key).to(device=device)
29
+ if dtype is not None and tensor.dtype != torch.int32:
30
+ tensor = tensor.to(dtype=dtype)
31
+ obj.requires_grad_(False)
32
+ # print(f"K: {model_key}, O: {obj.shape} T: {tensor.shape}")
33
+ if obj.shape != tensor.shape:
34
+ print(
35
+ f"W: shape mismatch for key {model_key}, {obj.shape} != {tensor.shape}"
36
+ )
37
+ obj.set_(tensor)
38
+ except Exception as e:
39
+ print(f"Failed to load key '{key}' in safetensors file: {e}")
40
+ raise e
41
+
42
+ CLIPG_CONFIG = {
43
+ "hidden_act": "gelu",
44
+ "hidden_size": 1280,
45
+ "intermediate_size": 5120,
46
+ "num_attention_heads": 20,
47
+ "num_hidden_layers": 32,
48
+ }
49
+
50
+
51
+ class ClipG:
52
+ def __init__(self, model_folder: str, device: str = "cpu"):
53
+ safetensors_path = hf_hub_download(
54
+ repo_id=model_folder,
55
+ filename="clip_g.safetensors",
56
+ cache_dir=None
57
+ )
58
+ with safe_open(
59
+ # f"{model_folder}/clip_g.safetensors", framework="pt", device="cpu"
60
+ safetensors_path, framework="pt", device="cpu"
61
+ ) as f:
62
+ self.model = SDXLClipG(CLIPG_CONFIG, device=device, dtype=torch.float32)
63
+ load_into(f, self.model.transformer, "", device, torch.float32)
64
+
65
+
66
+ CLIPL_CONFIG = {
67
+ "hidden_act": "quick_gelu",
68
+ "hidden_size": 768,
69
+ "intermediate_size": 3072,
70
+ "num_attention_heads": 12,
71
+ "num_hidden_layers": 12,
72
+ }
73
+
74
+
75
+ class ClipL:
76
+ def __init__(self, model_folder: str):
77
+ safetensors_path = hf_hub_download(
78
+ repo_id=model_folder,
79
+ filename="clip_l.safetensors",
80
+ cache_dir=None
81
+ )
82
+ with safe_open(
83
+ # f"{model_folder}/clip_l.safetensors", framework="pt", device="cpu"
84
+ safetensors_path, framework="pt", device="cpu"
85
+ ) as f:
86
+ self.model = SDClipModel(
87
+ layer="hidden",
88
+ layer_idx=-2,
89
+ device="cpu",
90
+ dtype=torch.float32,
91
+ layer_norm_hidden_state=False,
92
+ return_projected_pooled=False,
93
+ textmodel_json_config=CLIPL_CONFIG,
94
+ )
95
+ load_into(f, self.model.transformer, "", "cpu", torch.float32)
96
+
97
+
98
+ T5_CONFIG = {
99
+ "d_ff": 10240,
100
+ "d_model": 4096,
101
+ "num_heads": 64,
102
+ "num_layers": 24,
103
+ "vocab_size": 32128,
104
+ }
105
+
106
+
107
+ class T5XXL:
108
+ def __init__(self, model_folder: str, device: str = "cpu", dtype=torch.float32):
109
+ safetensors_path = hf_hub_download(
110
+ repo_id=model_folder,
111
+ filename="t5xxl.safetensors",
112
+ cache_dir=None
113
+ )
114
+ with safe_open(
115
+ # f"{model_folder}/t5xxl.safetensors", framework="pt", device="cpu"
116
+ safetensors_path, framework="pt", device="cpu"
117
+ ) as f:
118
+ self.model = T5XXLModel(T5_CONFIG, device=device, dtype=dtype)
119
+ load_into(f, self.model.transformer, "", device, dtype)
120
+
121
+
122
+ tokenizer = SD3Tokenizer()
123
+ text_encoder_device = "cpu"
124
+ model_folder = "stabilityai/stable-diffusion-3.5-medium"
125
+ print("Loading Google T5-v1-XXL...")
126
+ t5xxl = T5XXL(model_folder, text_encoder_device, torch.float32)
127
+ print("Loading OpenAI CLIP L...")
128
+ clip_l = ClipL(model_folder)
129
+ print("Loading OpenCLIP bigG...")
130
+ clip_g = ClipG(model_folder, text_encoder_device)
131
+
132
+
133
+ def get_cond(self, prompt):
134
+ print("Encode prompt...")
135
+ tokens = tokenizer.tokenize_with_weights(prompt)
136
+ l_out, l_pooled = clip_l.model.encode_token_weights(tokens["l"])
137
+ g_out, g_pooled = clip_g.model.encode_token_weights(tokens["g"])
138
+ t5_out, t5_pooled = t5xxl.model.encode_token_weights(tokens["t5xxl"])
139
+ lg_out = torch.cat([l_out, g_out], dim=-1)
140
+ lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
141
+ return torch.cat([lg_out, t5_out], dim=-2), torch.cat(
142
+ (l_pooled, g_pooled), dim=-1
143
+ )