Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -37,26 +37,9 @@ from VitsModelSplit.dataset_features_collector import FeaturesCollectionDataset
|
|
| 37 |
from torch.cuda.amp import autocast, GradScaler
|
| 38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 39 |
|
| 40 |
-
|
| 41 |
-
# model= VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/TO/sp3/core/vend").to("cuda")
|
| 42 |
-
# model=VitsModel.from_pretrained("/content/drive/MyDrive/vitsM/heppa/EndCore3/v0").to("cuda")
|
| 43 |
-
# model.discriminator=model1.discriminator
|
| 44 |
-
# model.duration_predictor=model1.duration_predictor
|
| 45 |
-
|
| 46 |
-
# model.setMfA(monotonic_align.maximum_path)
|
| 47 |
-
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ara",cache_dir="./")
|
| 48 |
feature_extractor = VitsFeatureExtractor()
|
| 49 |
-
|
| 50 |
-
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
|
| 51 |
-
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
|
| 52 |
-
sgl=get_state_grad_loss(mel=True,
|
| 53 |
-
# generator=False,
|
| 54 |
-
# discriminator=False,
|
| 55 |
-
duration=False)
|
| 56 |
-
|
| 57 |
-
training_args.num_train_epochs=1000
|
| 58 |
-
training_args.fp16=True
|
| 59 |
-
training_args.eval_steps=300
|
| 60 |
# sgl=get_state_grad_loss(k1=True,#generator=False,
|
| 61 |
# discriminator=False,
|
| 62 |
# duration=False
|
|
@@ -573,24 +556,37 @@ train_dataset_dirs=[
|
|
| 573 |
|
| 574 |
|
| 575 |
|
| 576 |
-
|
| 577 |
-
training_args.d_learning_rate=2e-4
|
| 578 |
-
training_args.learning_rate=2e-4
|
| 579 |
-
training_args.weight_mel=45
|
| 580 |
-
training_args.num_train_epochs=4
|
| 581 |
-
training_args.eval_steps=1000
|
| 582 |
-
global_step=0
|
| 583 |
dir_model='wasmdashai/vits-ar-huba-fine'
|
| 584 |
|
| 585 |
|
| 586 |
|
| 587 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 588 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 589 |
-
|
| 590 |
|
| 591 |
@spaces.GPU
|
| 592 |
def greet(text,id):
|
| 593 |
global GK
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
b=int(id)
|
| 595 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 596 |
ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_dataset_dirs = train_dataset_dirs,
|
|
|
|
| 37 |
from torch.cuda.amp import autocast, GradScaler
|
| 38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 39 |
|
| 40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
feature_extractor = VitsFeatureExtractor()
|
| 42 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# sgl=get_state_grad_loss(k1=True,#generator=False,
|
| 44 |
# discriminator=False,
|
| 45 |
# duration=False
|
|
|
|
| 556 |
|
| 557 |
|
| 558 |
|
| 559 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
dir_model='wasmdashai/vits-ar-huba-fine'
|
| 561 |
|
| 562 |
|
| 563 |
|
| 564 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 565 |
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 566 |
+
global_step=0
|
| 567 |
|
| 568 |
@spaces.GPU
|
| 569 |
def greet(text,id):
|
| 570 |
global GK
|
| 571 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
|
| 572 |
+
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
|
| 573 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
|
| 574 |
+
sgl=get_state_grad_loss(mel=True,
|
| 575 |
+
# generator=False,
|
| 576 |
+
# discriminator=False,
|
| 577 |
+
duration=False)
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
training_args.num_train_epochs=1000
|
| 581 |
+
training_args.fp16=True
|
| 582 |
+
training_args.eval_steps=300
|
| 583 |
+
training_args.weight_kl=1
|
| 584 |
+
training_args.d_learning_rate=2e-4
|
| 585 |
+
training_args.learning_rate=2e-4
|
| 586 |
+
training_args.weight_mel=45
|
| 587 |
+
training_args.num_train_epochs=4
|
| 588 |
+
training_args.eval_steps=1000
|
| 589 |
+
|
| 590 |
b=int(id)
|
| 591 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 592 |
ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_dataset_dirs = train_dataset_dirs,
|