Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import os | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--vae_encode_mode", | |
| type=str, | |
| default="mode", | |
| choices=["sample", "mode"], | |
| help="VAE encoding mode.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") | |
| parser.add_argument( | |
| "--max_sequence_length", | |
| type=int, | |
| default=512, | |
| help="Maximum sequence length to use with with the T5 text encoder", | |
| ) | |
| parser.add_argument( | |
| "--rank", | |
| type=int, | |
| default=4, | |
| help=("The dimension of the LoRA update matrices."), | |
| ) | |
| parser.add_argument( | |
| "--lora_alpha", | |
| type=int, | |
| default=4, | |
| help="LoRA alpha to be used for additional scaling.", | |
| ) | |
| parser.add_argument("--lora_dropout", type=float, default=0.0, help="Dropout probability for LoRA layers") | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="flux-dreambooth-lora", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--aspect_ratio_buckets", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Aspect ratio buckets to use for training. Define as a string of 'h1,w1;h2,w2;...'. " | |
| "e.g. '1024,1024;768,1360;1360,768;880,1168;1168,880;1248,832;832,1248'" | |
| "Images will be resized and cropped to fit the nearest bucket. If provided, --resolution is ignored." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument( | |
| "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| default=3.5, | |
| help="the FLUX.1 dev variant is a guidance distilled model", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--weighting_scheme", | |
| type=str, | |
| default="none", | |
| choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"], | |
| help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'), | |
| ) | |
| parser.add_argument( | |
| "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." | |
| ) | |
| parser.add_argument( | |
| "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." | |
| ) | |
| parser.add_argument( | |
| "--mode_scale", | |
| type=float, | |
| default=1.29, | |
| help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", | |
| ) | |
| parser.add_argument( | |
| "--optimizer", | |
| type=str, | |
| default="AdamW", | |
| help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", | |
| action="store_true", | |
| help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", | |
| ) | |
| parser.add_argument( | |
| "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." | |
| ) | |
| parser.add_argument( | |
| "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." | |
| ) | |
| parser.add_argument( | |
| "--prodigy_beta3", | |
| type=float, | |
| default=None, | |
| help="coefficients for computing the Prodigy stepsize using running averages. If set to None, " | |
| "uses the value of square root of beta2. Ignored if optimizer is adamW", | |
| ) | |
| parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
| parser.add_argument( | |
| "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder" | |
| ) | |
| parser.add_argument( | |
| "--lora_layers", | |
| type=str, | |
| default=None, | |
| help=( | |
| 'The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. E.g. - "to_k,to_q,to_v,to_out.0" will result in lora training of attention layers only' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--adam_epsilon", | |
| type=float, | |
| default=1e-08, | |
| help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
| ) | |
| parser.add_argument( | |
| "--prodigy_use_bias_correction", | |
| type=bool, | |
| default=True, | |
| help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", | |
| ) | |
| parser.add_argument( | |
| "--prodigy_safeguard_warmup", | |
| type=bool, | |
| default=True, | |
| help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " | |
| "Ignored if optimizer is adamW", | |
| ) | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--upcast_before_saving", | |
| action="store_true", | |
| default=False, | |
| help=( | |
| "Whether to upcast the trained transformer layers to float32 before saving (at the end of training). " | |
| "Defaults to precision dtype used for training to save memory" | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| return args |