File size: 4,014 Bytes
6639f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "a1e51cab",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ea3ea81741954384b0b6ee0e2d5f8b43",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "README.md:   0%|          | 0.00/670 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "16a23106959d4f4b870ac50ada254f73",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "data/train-00000-of-00004.parquet:   0%|          | 0.00/503M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a264fbf783704be8a18f62e7c352b1e7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "data/train-00001-of-00004.parquet:   0%|          | 0.00/503M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ecdb1976f88f44c3aa5aef51508643e1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "data/train-00002-of-00004.parquet:   0%|          | 0.00/477M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "451d70b2799b4312b66d3d5a9d993726",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "data/train-00003-of-00004.parquet:   0%|          | 0.00/497M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d93865e127a14f4a9179f3b86caa0cfe",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Generating train split:   0%|          | 0/1200 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "# Login using e.g. `huggingface-cli login` to access this dataset\n",
    "ds = load_dataset(\"weathon/nag_dataset\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ab34f490",
   "metadata": {},
   "outputs": [],
   "source": [
    "base = [{\n",
    "        \"prompt\": \"A cat with weird colors is sitting on the table, looking at the TV. The whole image has clashing colors.\",\n",
    "        \"missing_element\": \"nature colors\"\n",
    "    },]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "74c7ee35",
   "metadata": {},
   "outputs": [],
   "source": [
    "for sample in ds[\"train\"]:\n",
    "    prompt = sample[\"prompt\"]\n",
    "    missing_element = sample[\"negative_prompt\"]\n",
    "    base.append({\n",
    "        \"prompt\": prompt,\n",
    "        \"missing_element\": missing_element\n",
    "    })"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "c1aec56c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "with open(\"anti_aesthetics.json\", \"w\") as f:\n",
    "    json.dump(base, f, indent=4)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "neg",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.17"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}