|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
from PIL import Image |
|
|
import PIL |
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
from .processor import JointAttnProcessor2_0 |
|
|
from diffusers import StableDiffusion3Img2ImgPipeline |
|
|
import torch |
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
|
from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin |
|
|
from diffusers.models.autoencoders import AutoencoderKL |
|
|
from diffusers.models.transformers import SD3Transformer2DModel |
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
is_torch_xla_available, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput |
|
|
from diffusers.pipelines.stable_diffusion_3 import StableDiffusion3Pipeline |
|
|
from .sd3_pipeline import VSFStableDiffusion3Pipeline |
|
|
|
|
|
|
|
|
def calculate_shift( |
|
|
image_seq_len, |
|
|
base_seq_len: int = 256, |
|
|
max_seq_len: int = 4096, |
|
|
base_shift: float = 0.5, |
|
|
max_shift: float = 1.15, |
|
|
): |
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
|
b = base_shift - m * base_seq_len |
|
|
mu = image_seq_len * m + b |
|
|
return mu |
|
|
|
|
|
|
|
|
if is_torch_xla_available(): |
|
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
XLA_AVAILABLE = True |
|
|
else: |
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
def retrieve_latents( |
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
|
): |
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
|
return encoder_output.latent_dist.sample(generator) |
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
|
return encoder_output.latent_dist.mode() |
|
|
elif hasattr(encoder_output, "latents"): |
|
|
return encoder_output.latents |
|
|
else: |
|
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
|
scheduler, |
|
|
num_inference_steps: Optional[int] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
timesteps: Optional[List[int]] = None, |
|
|
sigmas: Optional[List[float]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
r""" |
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
|
|
Args: |
|
|
scheduler (`SchedulerMixin`): |
|
|
The scheduler to get timesteps from. |
|
|
num_inference_steps (`int`): |
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
|
must be `None`. |
|
|
device (`str` or `torch.device`, *optional*): |
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
|
`num_inference_steps` and `sigmas` must be `None`. |
|
|
sigmas (`List[float]`, *optional*): |
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
|
|
Returns: |
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
|
second element is the number of inference steps. |
|
|
""" |
|
|
if timesteps is not None and sigmas is not None: |
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
|
if timesteps is not None: |
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accepts_timesteps: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
elif sigmas is not None: |
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accept_sigmas: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
else: |
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VSFStableDiffusion3Img2ImgPipeline(VSFStableDiffusion3Pipeline): |
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
prompt, |
|
|
prompt_2, |
|
|
prompt_3, |
|
|
height, |
|
|
width, |
|
|
strength, |
|
|
negative_prompt=None, |
|
|
negative_prompt_2=None, |
|
|
negative_prompt_3=None, |
|
|
prompt_embeds=None, |
|
|
negative_prompt_embeds=None, |
|
|
pooled_prompt_embeds=None, |
|
|
negative_pooled_prompt_embeds=None, |
|
|
callback_on_step_end_tensor_inputs=None, |
|
|
max_sequence_length=None, |
|
|
): |
|
|
if ( |
|
|
height % (self.vae_scale_factor * self.patch_size) != 0 |
|
|
or width % (self.vae_scale_factor * self.patch_size) != 0 |
|
|
): |
|
|
raise ValueError( |
|
|
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}." |
|
|
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}." |
|
|
) |
|
|
|
|
|
if strength < 0 or strength > 1: |
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
|
): |
|
|
raise ValueError( |
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
|
) |
|
|
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt_3 is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt is None and prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
|
) |
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)): |
|
|
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}") |
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
elif negative_prompt_3 is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
|
raise ValueError( |
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
|
f" {negative_prompt_embeds.shape}." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
|
) |
|
|
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
|
) |
|
|
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
|
|
init_timestep = min(num_inference_steps * strength, num_inference_steps) |
|
|
|
|
|
t_start = int(max(num_inference_steps - init_timestep, 0)) |
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
if hasattr(self.scheduler, "set_begin_index"): |
|
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): |
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
|
raise ValueError( |
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
|
) |
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
if image.shape[1] == self.vae.config.latent_channels: |
|
|
init_latents = image |
|
|
|
|
|
else: |
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
|
raise ValueError( |
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
|
) |
|
|
|
|
|
elif isinstance(generator, list): |
|
|
init_latents = [ |
|
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
|
for i in range(batch_size) |
|
|
] |
|
|
init_latents = torch.cat(init_latents, dim=0) |
|
|
else: |
|
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
|
|
init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
|
raise ValueError( |
|
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
|
) |
|
|
else: |
|
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
|
|
shape = init_latents.shape |
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
|
|
|
init_latents = self.scheduler.scale_noise(init_latents, timestep, noise) |
|
|
latents = init_latents.to(device=device, dtype=dtype) |
|
|
|
|
|
return latents |
|
|
|
|
|
@property |
|
|
def guidance_scale(self): |
|
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
|
def joint_attention_kwargs(self): |
|
|
return self._joint_attention_kwargs |
|
|
|
|
|
@property |
|
|
def clip_skip(self): |
|
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
def do_classifier_free_guidance(self): |
|
|
return self._guidance_scale > 1 |
|
|
|
|
|
@property |
|
|
def num_timesteps(self): |
|
|
return self._num_timesteps |
|
|
|
|
|
@property |
|
|
def interrupt(self): |
|
|
return self._interrupt |
|
|
|
|
|
|
|
|
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor: |
|
|
"""Encodes the given image into a feature representation using a pre-trained image encoder. |
|
|
|
|
|
Args: |
|
|
image (`PipelineImageInput`): |
|
|
Input image to be encoded. |
|
|
device: (`torch.device`): |
|
|
Torch device. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: The encoded image feature representation. |
|
|
""" |
|
|
if not isinstance(image, torch.Tensor): |
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
|
|
image = image.to(device=device, dtype=self.dtype) |
|
|
|
|
|
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
|
|
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
|
self, |
|
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
|
ip_adapter_image_embeds: Optional[torch.Tensor] = None, |
|
|
device: Optional[torch.device] = None, |
|
|
num_images_per_prompt: int = 1, |
|
|
do_classifier_free_guidance: bool = True, |
|
|
) -> torch.Tensor: |
|
|
"""Prepares image embeddings for use in the IP-Adapter. |
|
|
|
|
|
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed. |
|
|
|
|
|
Args: |
|
|
ip_adapter_image (`PipelineImageInput`, *optional*): |
|
|
The input image to extract features from for IP-Adapter. |
|
|
ip_adapter_image_embeds (`torch.Tensor`, *optional*): |
|
|
Precomputed image embeddings. |
|
|
device: (`torch.device`, *optional*): |
|
|
Torch device. |
|
|
num_images_per_prompt (`int`, defaults to 1): |
|
|
Number of images that should be generated per prompt. |
|
|
do_classifier_free_guidance (`bool`, defaults to True): |
|
|
Whether to use classifier free guidance or not. |
|
|
""" |
|
|
device = device or self._execution_device |
|
|
|
|
|
if ip_adapter_image_embeds is not None: |
|
|
if do_classifier_free_guidance: |
|
|
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2) |
|
|
else: |
|
|
single_image_embeds = ip_adapter_image_embeds |
|
|
elif ip_adapter_image is not None: |
|
|
single_image_embeds = self.encode_image(ip_adapter_image, device) |
|
|
if do_classifier_free_guidance: |
|
|
single_negative_image_embeds = torch.zeros_like(single_image_embeds) |
|
|
else: |
|
|
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.") |
|
|
|
|
|
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0) |
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) |
|
|
|
|
|
return image_embeds.to(device=device) |
|
|
|
|
|
|
|
|
def enable_sequential_cpu_offload(self, *args, **kwargs): |
|
|
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload: |
|
|
logger.warning( |
|
|
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses " |
|
|
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling " |
|
|
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`." |
|
|
) |
|
|
|
|
|
super().enable_sequential_cpu_offload(*args, **kwargs) |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
|
prompt_3: Optional[Union[str, List[str]]] = None, |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
image: PipelineImageInput = None, |
|
|
strength: float = 0.6, |
|
|
num_inference_steps: int = 50, |
|
|
sigmas: Optional[List[float]] = None, |
|
|
guidance_scale: float = 7.0, |
|
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
|
negative_prompt_3: Optional[Union[str, List[str]]] = None, |
|
|
num_images_per_prompt: Optional[int] = 1, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.FloatTensor] = None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
|
ip_adapter_image_embeds: Optional[torch.Tensor] = None, |
|
|
return_dict: bool = True, |
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
clip_skip: Optional[int] = None, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
max_sequence_length: int = 256, |
|
|
mu: Optional[float] = None, |
|
|
scale: float = 1.0, |
|
|
offset: float = 0.08, |
|
|
): |
|
|
r""" |
|
|
Function invoked when calling the pipeline for generation. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
|
instead. |
|
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
|
will be used instead |
|
|
prompt_3 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is |
|
|
will be used instead |
|
|
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): |
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
|
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): |
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
|
expense of slower inference. |
|
|
sigmas (`List[float]`, *optional*): |
|
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
|
will be used. |
|
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
|
Guidance scale as defined in [Classifier-Free Diffusion |
|
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. |
|
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting |
|
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to |
|
|
the text `prompt`, usually at the expense of lower image quality. |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
|
less than `1`). |
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used instead |
|
|
negative_prompt_3 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and |
|
|
`text_encoder_3`. If not defined, `negative_prompt` is used instead |
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
|
The number of images to generate per prompt. |
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
|
to make generation deterministic. |
|
|
latents (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
|
provided, text embeddings will be generated from `prompt` input argument. |
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
|
argument. |
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
|
input argument. |
|
|
ip_adapter_image (`PipelineImageInput`, *optional*): |
|
|
Optional image input to work with IP Adapters. |
|
|
ip_adapter_image_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images, |
|
|
emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to |
|
|
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generate image. Choose between |
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of |
|
|
a plain tuple. |
|
|
joint_attention_kwargs (`dict`, *optional*): |
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
|
`self.processor` in |
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
callback_on_step_end (`Callable`, *optional*): |
|
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
|
`callback_on_step_end_tensor_inputs`. |
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. |
|
|
mu (`float`, *optional*): `mu` value used for `dynamic_shifting`. |
|
|
|
|
|
Examples: |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`: |
|
|
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a |
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
|
""" |
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
prompt_2, |
|
|
prompt_3, |
|
|
height, |
|
|
width, |
|
|
strength, |
|
|
negative_prompt=negative_prompt, |
|
|
negative_prompt_2=negative_prompt_2, |
|
|
negative_prompt_3=negative_prompt_3, |
|
|
prompt_embeds=prompt_embeds, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._clip_skip = clip_skip |
|
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
|
self._interrupt = False |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
|
) |
|
|
|
|
|
|
|
|
( |
|
|
pos_prompt_embeds, |
|
|
_, |
|
|
pooled_prompt_embeds, |
|
|
_, |
|
|
) = self.encode_prompt( |
|
|
prompt=prompt, |
|
|
prompt_2=prompt, |
|
|
prompt_3=prompt, |
|
|
do_classifier_free_guidance=False, |
|
|
) |
|
|
( |
|
|
neg_prompt_embeds, |
|
|
_, |
|
|
neg_pooled_prompt_embeds, |
|
|
_, |
|
|
) = self.encode_prompt( |
|
|
prompt=negative_prompt, |
|
|
prompt_2=negative_prompt, |
|
|
prompt_3=negative_prompt, |
|
|
do_classifier_free_guidance=False, |
|
|
padding=False |
|
|
) |
|
|
prompt_embeds = torch.cat([pos_prompt_embeds, neg_prompt_embeds], dim=1) |
|
|
|
|
|
neg_len = neg_prompt_embeds.shape[1] |
|
|
pos_len = prompt_embeds.shape[1] |
|
|
|
|
|
img_len = (height // 8 // self.transformer.config.patch_size) * (width // 8 //self.transformer.config.patch_size) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds, neg_prompt_embeds], dim=1) |
|
|
attn_mask = torch.zeros((1, img_len + prompt_embeds.shape[1], img_len + prompt_embeds.shape[1] + neg_len)) |
|
|
attn_mask[:,-neg_len-pos_len:,-neg_len:] = -torch.inf |
|
|
attn_mask[:,:-neg_len,-2*neg_len:-neg_len] = -torch.inf |
|
|
attn_mask[:,-neg_len:,img_len:img_len+pos_len] = -torch.inf |
|
|
attn_mask[:,:img_len,-neg_len:] -= offset |
|
|
|
|
|
attn_mask = attn_mask.to(device=device, dtype=prompt_embeds.dtype) |
|
|
|
|
|
processors_backup = [] |
|
|
self.maps = [] |
|
|
self.images = [] |
|
|
for block in self.transformer.transformer_blocks: |
|
|
processors_backup.append(block.attn.processor) |
|
|
block.attn.processor = JointAttnProcessor2_0(scale=scale, attn_mask=attn_mask, neg_prompt_length=neg_len, maps=self.maps) |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) |
|
|
|
|
|
|
|
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
|
|
|
|
|
|
|
scheduler_kwargs = {} |
|
|
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None: |
|
|
image_seq_len = (int(height) // self.vae_scale_factor // self.transformer.config.patch_size) * ( |
|
|
int(width) // self.vae_scale_factor // self.transformer.config.patch_size |
|
|
) |
|
|
mu = calculate_shift( |
|
|
image_seq_len, |
|
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
|
self.scheduler.config.get("base_shift", 0.5), |
|
|
self.scheduler.config.get("max_shift", 1.16), |
|
|
) |
|
|
scheduler_kwargs["mu"] = mu |
|
|
elif mu is not None: |
|
|
scheduler_kwargs["mu"] = mu |
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
|
self.scheduler, num_inference_steps, device, sigmas=sigmas, **scheduler_kwargs |
|
|
) |
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
|
|
|
if latents is None: |
|
|
latents = self.prepare_latents( |
|
|
image, |
|
|
latent_timestep, |
|
|
batch_size, |
|
|
num_images_per_prompt, |
|
|
prompt_embeds.dtype, |
|
|
device, |
|
|
generator, |
|
|
) |
|
|
|
|
|
|
|
|
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None: |
|
|
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( |
|
|
ip_adapter_image, |
|
|
ip_adapter_image_embeds, |
|
|
device, |
|
|
batch_size * num_images_per_prompt, |
|
|
self.do_classifier_free_guidance, |
|
|
) |
|
|
|
|
|
if self.joint_attention_kwargs is None: |
|
|
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds} |
|
|
else: |
|
|
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds) |
|
|
|
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
self._num_timesteps = len(timesteps) |
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
for i, t in enumerate(timesteps): |
|
|
if self.interrupt: |
|
|
continue |
|
|
|
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
|
|
noise_pred = self.transformer( |
|
|
hidden_states=latent_model_input, |
|
|
timestep=timestep, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
pooled_projections=pooled_prompt_embeds, |
|
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
|
|
|
latents_dtype = latents.dtype |
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
|
|
if latents.dtype != latents_dtype: |
|
|
if torch.backends.mps.is_available(): |
|
|
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
|
callback_kwargs = {} |
|
|
for k in callback_on_step_end_tensor_inputs: |
|
|
callback_kwargs[k] = locals()[k] |
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
|
) |
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
|
progress_bar.update() |
|
|
|
|
|
if XLA_AVAILABLE: |
|
|
xm.mark_step() |
|
|
|
|
|
if output_type == "latent": |
|
|
image = latents |
|
|
|
|
|
else: |
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
for i, blocks in enumerate(self.transformer.transformer_blocks): |
|
|
blocks.attn.processor = processors_backup[i] |
|
|
|
|
|
return StableDiffusion3PipelineOutput(images=image) |