Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") | |
| tokenizer = AutoTokenizer.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality") | |
| import torch | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| #print ("device ",device) | |
| model = model.to(device)# Diverse Beam search | |
| #print ("\n\n") | |
| #print ("Original: ",context) | |
| def generate_text(inp): | |
| context = inp | |
| text = "paraphrase: "+context + " </s>" | |
| encoding = tokenizer.encode_plus(text,max_length =128, padding=True, return_tensors="pt") | |
| input_ids,attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) | |
| model.eval() | |
| diverse_beam_outputs = model.generate( | |
| input_ids=input_ids,attention_mask=attention_mask, | |
| max_length=128, | |
| early_stopping=True, | |
| num_beams=5, | |
| num_beam_groups = 5, | |
| num_return_sequences=5, | |
| diversity_penalty = 0.70) | |
| sent = tokenizer.decode(diverse_beam_outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
| return sent | |
| output_text = gr.outputs.Textbox() | |
| gr.Interface(generate_text,"textbox", output_text).launch(inline=False) |