Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,759 Bytes
1bec58f 4edde26 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 4edde26 0c4a319 4edde26 0c4a319 4edde26 0c4a319 4edde26 0c4a319 4edde26 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 4edde26 0c4a319 4edde26 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 4edde26 1bec58f 0c4a319 1bec58f 0c4a319 1bec58f 4edde26 0c4a319 1bec58f 0c4a319 1bec58f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
import random
from PIL import Image
import io
import json
import uuid
import os
from stable_diffusion_demo import StableDiffusion
from datasets import Dataset, Features, Value, Image as HFImage, load_dataset, concatenate_datasets
import tempfile
# Setup directories
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
IMAGE_DIR = os.path.join(BASE_DIR, "neutral_images_storage")
os.makedirs(IMAGE_DIR, exist_ok=True)
# HuggingFace dataset configuration
DATASET_REPO = "willsh1997/neutral-sd-outputs"
HF_TOKEN = os.environ.get("HF_TOKEN", "")
def generate_image():
"""Generate a neutral image using Stable Diffusion"""
generated_image = StableDiffusion(
uncond_embeddings=[''],
text_embeddings=[''],
height=512,
width=512,
num_inference_steps=25,
guidance_scale=7.5,
seed=None,
)
return generated_image
def load_dataset_from_hf():
"""Load dataset from HuggingFace Hub"""
try:
dataset = load_dataset(DATASET_REPO, split="train")
return dataset
except Exception as e:
print(f"Error loading dataset: {e}")
# Return empty dataset with correct schema if repo doesn't exist
return Dataset.from_dict({
"image": [],
"description": [],
"uuid": []
}).cast_column("image", HFImage())
def save_to_hf_dataset(image, description):
"""Save new image and description to HuggingFace dataset"""
# try:
# Generate UUID for the new entry
image_id = str(uuid.uuid4())
# Load existing dataset
try:
existing_dataset = load_dataset(DATASET_REPO, split="train")
except:
# Create empty dataset if it doesn't exist
existing_dataset = Dataset.from_dict({
"image": [],
"description": [],
"uuid": []
}).cast_column("image", HFImage())
# Create temporary file for the image
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file:
image.save(tmp_file.name, format='PNG')
# Create new entry
new_entry = {
"image": [tmp_file.name],
"description": [description],
"uuid": [image_id]
}
# Create new dataset from the entry
new_dataset = Dataset.from_dict(new_entry).cast_column("image", HFImage())
# Concatenate with existing dataset
if len(existing_dataset) > 0:
combined_dataset = concatenate_datasets([existing_dataset, new_dataset])
else:
combined_dataset = new_dataset
# Push to HuggingFace Hub
combined_dataset.push_to_hub(DATASET_REPO, private=False, token=HF_TOKEN)
# Clean up temporary file
os.unlink(tmp_file.name)
return True, "Successfully saved to HuggingFace dataset!"
# except Exception as e:
# return False, f"Error saving to HuggingFace: {str(e)}"
def save_image_and_description(image, description):
"""Save the generated image and its description to HuggingFace dataset"""
if image is None:
return "No image to save!", None, None
if not description:
return "Please provide a description!", None, None
# Save to HuggingFace dataset
success, message = save_to_hf_dataset(image, description)
if success:
# Also save locally for backup/caching
try:
image_id = uuid.uuid4()
save_path = os.path.join(IMAGE_DIR, f"{image_id}.png")
json_path = os.path.join(IMAGE_DIR, f"{image_id}.json")
image.save(save_path)
desc_json = {"description": description}
with open(json_path, "w") as f:
json.dump(desc_json, f)
except:
pass # Local save is just backup, don't fail if it doesn't work
return None, load_previous_examples()
else:
return None, None
def load_previous_examples():
"""Load examples from HuggingFace dataset"""
try:
dataset = load_dataset_from_hf()
examples = []
# Convert dataset to gallery format
for item in dataset:
if item['image'] is not None and item['description']:
examples.append((item['image'], item['description']))
return examples
except Exception as e:
print(f"Error loading examples from HuggingFace: {e}")
# Fallback to local examples
return load_local_examples()
def load_local_examples():
"""Fallback: Load examples from local storage"""
examples = []
try:
for file in os.listdir(IMAGE_DIR):
if file.endswith(".png"):
image_id = file.replace(".png", "")
image_path = os.path.join(IMAGE_DIR, f"{image_id}.png")
json_path = os.path.join(IMAGE_DIR, f"{image_id}.json")
if os.path.exists(json_path):
image = Image.open(image_path)
with open(json_path, "r") as f:
desc = json.load(f)["description"]
examples.append((image, desc))
except Exception as e:
print(f"Error loading local examples: {e}")
return examples
def create_initial_dataset():
"""Create initial dataset from local files if HF dataset doesn't exist"""
try:
# Check if we have local files to upload
local_examples = load_local_examples()
if not local_examples:
return
# Try to load existing dataset
try:
existing_dataset = load_dataset(DATASET_REPO, split="train")
if len(existing_dataset) > 0:
return # Dataset already exists with data
except:
pass # Dataset doesn't exist, we'll create it
# Create dataset from local files
images = []
descriptions = []
uuids = []
for file in os.listdir(IMAGE_DIR):
if file.endswith(".png"):
image_id = file.replace(".png", "")
image_path = os.path.join(IMAGE_DIR, f"{image_id}.png")
json_path = os.path.join(IMAGE_DIR, f"{image_id}.json")
if os.path.exists(json_path):
with open(json_path, "r") as f:
desc = json.load(f)["description"]
images.append(image_path)
descriptions.append(desc)
uuids.append(image_id)
if images:
# Create dataset
dataset_dict = {
"image": images,
"description": descriptions,
"uuid": uuids
}
dataset = Dataset.from_dict(dataset_dict).cast_column("image", HFImage())
dataset.push_to_hub(DATASET_REPO, private=False)
print(f"Uploaded {len(images)} images to HuggingFace dataset")
except Exception as e:
print(f"Error creating initial dataset: {e}")
# Create the Gradio interface
with gr.Blocks(title="Neutral Image App") as demo:
gr.Markdown("# Neutral Image App")
gr.Markdown(f"*Images are saved to HuggingFace dataset: [{DATASET_REPO}](https://huggingface.co/datasets/{DATASET_REPO})*")
with gr.Row():
with gr.Column():
generate_btn = gr.Button("Generate Image")
image_output = gr.Image(type="pil", label="Generated Image", interactive=False)
description_input = gr.Textbox(label="Describe the image", lines=3)
save_btn = gr.Button("Save Image and Description")
# status_output = gr.Textbox(label="Status")
with gr.Accordion("Previous Examples", open=False):
gallery = gr.Gallery(
label="Previous Images from HuggingFace Dataset",
show_label=True,
elem_id="gallery"
)
refresh_btn = gr.Button("Refresh Gallery")
# Set up event handlers
generate_btn.click(
fn=generate_image,
outputs=[image_output]
)
save_btn.click(
fn=save_image_and_description,
inputs=[image_output, description_input],
outputs=[image_output, gallery]
)
refresh_btn.click(
fn=load_previous_examples,
outputs=[gallery]
)
# Load previous examples on startup
demo.load(
fn=load_previous_examples,
outputs=[gallery]
)
# Launch the app
if __name__ == "__main__":
# Create initial dataset from local files if needed
create_initial_dataset()
demo.launch() |