Spaces:
Build error
Build error
initial commit
Browse files- .gitignore +7 -0
- README.md +2 -2
- app.py +155 -0
- nousgirl.png +0 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
env/
|
| 2 |
+
bin/
|
| 3 |
+
cd/
|
| 4 |
+
lib
|
| 5 |
+
lib64
|
| 6 |
+
pyvenv.cfg
|
| 7 |
+
.env
|
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
title: Finetuning Subnet Leaderboard
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
title: Finetuning Subnet Leaderboard
|
| 3 |
+
emoji: ⚒️
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.41.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import bittensor as bt
|
| 3 |
+
import typing
|
| 4 |
+
from bittensor.extrinsics.serving import get_metadata
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
import requests
|
| 7 |
+
import wandb
|
| 8 |
+
import math
|
| 9 |
+
import os
|
| 10 |
+
import statistics
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
from huggingface_hub import HfApi
|
| 13 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 14 |
+
|
| 15 |
+
load_dotenv()
|
| 16 |
+
|
| 17 |
+
TITLE = """<h1 align="center" id="space-title">Subnet 6 Leaderboard</h1>"""
|
| 18 |
+
IMAGE = """<a href="https://discord.gg/jqVphNsB4H" target="_blank"><img src="https://i.ibb.co/88wyVQ7/nousgirl.png" alt="nousgirl" style="margin: auto; width: 20%; border: 0;" /></a>"""
|
| 19 |
+
HEADER = """<h2 align="center"><a href="https://github.com/NousResearch/finetuning-subnet" target="_blank">Subnet 6</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that incentivizes the creation of the best open models by evaluating submissions on a constant stream of newly generated syntheic GPT-4 data. The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
|
| 20 |
+
DETAILS = """<b>Name</b> is the 🤗 Hugging Face model name (click to go to the model card). <b>Rewards / Day</b> are the expected rewards per day for each model. <b>Last Average Loss</b> is the last loss value on the evaluation data for the model as calculated by a validator (lower is better). <b>UID</b> is the Bittensor user id of the submitter. More stats on <a href="https://taostats.io/subnets/netuid-6/" target="_blank">taostats</a>."""
|
| 21 |
+
VALIDATOR_WANDB_PROJECT = os.environ["VALIDATOR_WANDB_PROJECT"]
|
| 22 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 23 |
+
API = HfApi(token=H4_TOKEN)
|
| 24 |
+
REPO_ID = "NousResearch/finetuning_subnet_leaderboard"
|
| 25 |
+
MAX_AVG_LOSS_POINTS = 5
|
| 26 |
+
|
| 27 |
+
subtensor = bt.subtensor("finney")
|
| 28 |
+
metagraph: bt.metagraph = subtensor.metagraph(6, lite=False)
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class ModelData:
|
| 32 |
+
uid: int
|
| 33 |
+
hotkey: str
|
| 34 |
+
namespace: str
|
| 35 |
+
name: str
|
| 36 |
+
commit: str
|
| 37 |
+
hash: str
|
| 38 |
+
block: int
|
| 39 |
+
incentive: float
|
| 40 |
+
emission: float
|
| 41 |
+
|
| 42 |
+
@classmethod
|
| 43 |
+
def from_compressed_str(cls, uid: int, hotkey: str, cs: str, block: int, incentive: float, emission: float):
|
| 44 |
+
"""Returns an instance of this class from a compressed string representation"""
|
| 45 |
+
tokens = cs.split(":")
|
| 46 |
+
return ModelData(
|
| 47 |
+
uid=uid,
|
| 48 |
+
hotkey=hotkey,
|
| 49 |
+
namespace=tokens[0],
|
| 50 |
+
name=tokens[1],
|
| 51 |
+
commit=tokens[2] if tokens[2] != "None" else None,
|
| 52 |
+
hash=tokens[3] if tokens[3] != "None" else None,
|
| 53 |
+
block=block,
|
| 54 |
+
incentive=incentive,
|
| 55 |
+
emission=emission
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def get_tao_price():
|
| 59 |
+
return float(requests.get("https://api.kucoin.com/api/v1/market/stats?symbol=TAO-USDT").json()["data"]["last"])
|
| 60 |
+
|
| 61 |
+
def print_validator_weights(metagraph: bt.metagraph):
|
| 62 |
+
for uid in metagraph.uids.tolist():
|
| 63 |
+
if metagraph.validator_trust[uid].item() > 0:
|
| 64 |
+
print(f"uid: {uid}")
|
| 65 |
+
for ouid in metagraph.uids.tolist():
|
| 66 |
+
if ouid == uid:
|
| 67 |
+
continue
|
| 68 |
+
weight = round(metagraph.weights[uid][ouid].item(), 4)
|
| 69 |
+
if weight > 0:
|
| 70 |
+
print(f" {ouid} = {weight}")
|
| 71 |
+
|
| 72 |
+
def get_subnet_data(metagraph: bt.metagraph) -> typing.List[ModelData]:
|
| 73 |
+
result = []
|
| 74 |
+
for uid in metagraph.uids.tolist():
|
| 75 |
+
hotkey = metagraph.hotkeys[uid]
|
| 76 |
+
metadata = get_metadata(subtensor, metagraph.netuid, hotkey)
|
| 77 |
+
if not metadata:
|
| 78 |
+
continue
|
| 79 |
+
|
| 80 |
+
commitment = metadata["info"]["fields"][0]
|
| 81 |
+
hex_data = commitment[list(commitment.keys())[0]][2:]
|
| 82 |
+
chain_str = bytes.fromhex(hex_data).decode()
|
| 83 |
+
block = metadata["block"]
|
| 84 |
+
incentive = metagraph.incentive[uid].nan_to_num().item()
|
| 85 |
+
emission = metagraph.emission[uid].nan_to_num().item() * 20 # convert to daily TAO
|
| 86 |
+
|
| 87 |
+
model_data = None
|
| 88 |
+
try:
|
| 89 |
+
model_data = ModelData.from_compressed_str(uid, hotkey, chain_str, block, incentive, emission)
|
| 90 |
+
except:
|
| 91 |
+
continue
|
| 92 |
+
|
| 93 |
+
result.append(model_data)
|
| 94 |
+
return result
|
| 95 |
+
|
| 96 |
+
def get_avg_loss(uids: typing.List[int]) -> typing.Dict[int, float]:
|
| 97 |
+
api = wandb.Api()
|
| 98 |
+
runs = list(api.runs(VALIDATOR_WANDB_PROJECT))
|
| 99 |
+
runs.reverse()
|
| 100 |
+
|
| 101 |
+
result = {}
|
| 102 |
+
for run in runs:
|
| 103 |
+
history = run.history()
|
| 104 |
+
for uid in uids:
|
| 105 |
+
if uid in result.keys():
|
| 106 |
+
continue
|
| 107 |
+
key = f"uid_data.{uid}"
|
| 108 |
+
if key in history:
|
| 109 |
+
data = [x for x in list(history[key]) if not math.isnan(x)][-MAX_AVG_LOSS_POINTS:]
|
| 110 |
+
if len(data) > 0:
|
| 111 |
+
result[uid] = statistics.fmean(data)
|
| 112 |
+
if len(result.keys()) == len(uids):
|
| 113 |
+
break
|
| 114 |
+
return result
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
tao_price = get_tao_price()
|
| 118 |
+
|
| 119 |
+
leaderboard_df = get_subnet_data(metagraph)
|
| 120 |
+
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)
|
| 121 |
+
|
| 122 |
+
losses = get_avg_loss([x.uid for x in leaderboard_df])
|
| 123 |
+
|
| 124 |
+
demo = gr.Blocks()
|
| 125 |
+
with demo:
|
| 126 |
+
gr.HTML(TITLE)
|
| 127 |
+
gr.HTML(IMAGE)
|
| 128 |
+
gr.HTML(HEADER)
|
| 129 |
+
gr.HTML(DETAILS)
|
| 130 |
+
|
| 131 |
+
value = [
|
| 132 |
+
[
|
| 133 |
+
f'[{c.namespace}/{c.name}](https://huggingface.co/{c.namespace}/{c.name})',
|
| 134 |
+
f'${round(c.emission * tao_price, 2):,} (τ{round(c.emission, 2):,})',
|
| 135 |
+
f'{round(losses[c.uid], 4) if c.uid in losses.keys() else ""}',
|
| 136 |
+
c.uid
|
| 137 |
+
] for c in leaderboard_df
|
| 138 |
+
]
|
| 139 |
+
leaderboard_table = gr.components.Dataframe(
|
| 140 |
+
value=value,
|
| 141 |
+
headers=["Name", "Rewards / Day", "Last Average Loss", "UID",],
|
| 142 |
+
datatype=["markdown", "number", "number", "number"],
|
| 143 |
+
elem_id="leaderboard-table",
|
| 144 |
+
interactive=False,
|
| 145 |
+
visible=True,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def restart_space():
|
| 149 |
+
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 150 |
+
|
| 151 |
+
scheduler = BackgroundScheduler()
|
| 152 |
+
scheduler.add_job(restart_space, "interval", seconds=60 * 15) # restart every 15 minutes
|
| 153 |
+
scheduler.start()
|
| 154 |
+
|
| 155 |
+
demo.launch()
|
nousgirl.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
bittensor==6.7.0
|
| 2 |
+
requests==2.31.0
|
| 3 |
+
wandb==0.16.2
|
| 4 |
+
python-dotenv==1.0.1
|
| 5 |
+
APScheduler==3.10.1
|
| 6 |
+
huggingface-hub>=0.18.0
|