Spaces:
Sleeping
Sleeping
| from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
| import datetime | |
| import requests | |
| import pytz | |
| import yaml | |
| from tools.final_answer import FinalAnswerTool | |
| #from requests import Request, Session | |
| from requests.exceptions import ConnectionError, Timeout, TooManyRedirects | |
| import json | |
| from typing import Dict, Any, Optional, List | |
| from Gradio_UI import GradioUI | |
| verbose = True | |
| if verbose: print("Running app.py") | |
| #################################### TOOLS ############################################### | |
| # Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
| def my_custom_tool(arg1:str, arg2:int)-> str: #it's important to specify the return type | |
| #Keep this format for the description / args / args description but feel free to modify the tool | |
| """A tool that does nothing yet | |
| Args: | |
| arg1: the first argument | |
| arg2: the second argument | |
| """ | |
| return "What magic will you build ?" | |
| def fetch_active_crypto(currency: str = 'USD', chunk_size: int = 100) -> Optional[List[Dict[str, Any]]]: | |
| """A tool that fetches and reverse sorts by market_cap all active crypto in currency. | |
| Args: | |
| currency: A string representing the currency the value is returned in (default: 'USD'). | |
| chunk_size: The number of cryptocurrencies to process in each chunk (default: 100). | |
| Returns: | |
| Optional[List[Dict[str, Any]]]: A list of dictionaries containing the top cryptocurrencies by market cap, | |
| chunked into smaller pieces, or None if an error occurs. | |
| """ | |
| url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest' | |
| parameters = { | |
| 'start': '1', | |
| 'limit': '5000', | |
| 'convert': currency | |
| } | |
| headers = { | |
| 'Accepts': 'application/json', | |
| 'X-CMC_PRO_API_KEY': 'e375c697-e504-464e-b800-2b8cf9c67765', | |
| } | |
| session = requests.Session() | |
| session.headers.update(headers) | |
| try: | |
| response = session.get(url, params=parameters) | |
| response.raise_for_status() # Raise an exception for HTTP errors | |
| data = json.loads(response.text) | |
| # Extract and sort cryptocurrencies by market cap | |
| if 'data' in data: | |
| sorted_crypto = sorted(data['data'], key=lambda x: x['quote'][currency]['market_cap'], reverse=True) | |
| # Chunk the sorted data into smaller pieces | |
| chunks = [sorted_crypto[i:i + chunk_size] for i in range(0, len(sorted_crypto), chunk_size)] | |
| # Convert each chunk into a dictionary | |
| result = [] | |
| for chunk in chunks: | |
| chunk_dict = {crypto['name']: crypto['quote'][currency] for crypto in chunk} | |
| result.append(chunk_dict) | |
| return result | |
| else: | |
| print("No data found in the response.") | |
| return None | |
| except (ConnectionError, Timeout, TooManyRedirects, requests.exceptions.HTTPError) as e: | |
| print(f"An error occurred: {e}") | |
| return None | |
| def get_current_time_in_timezone(timezone: str) -> str: | |
| """A tool that fetches the current local time in a specified timezone. | |
| Args: | |
| timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
| """ | |
| try: | |
| # Create timezone object | |
| tz = pytz.timezone(timezone) | |
| # Get current time in that timezone | |
| local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
| return f"The current local time in {timezone} is: {local_time}" | |
| except Exception as e: | |
| return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
| final_answer = FinalAnswerTool() | |
| ########################################## MODEL SELECTION ################################################ | |
| MODEL_IDS = [ | |
| 'Qwen/Qwen2.5-Coder-14B-Instruct', | |
| 'Qwen/Qwen2.5-Coder-3B-Instruct', | |
| 'Qwen/Qwen2.5-Coder-7B-Instruct', | |
| 'Qwen/Qwen2.5-Coder-32B-Instruct', | |
| 'Qwen/Qwen2.5-Coder-1.5B-Instruct' | |
| #'https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud/', | |
| #'https://jc26mwg228mkj8dw.us-east-1.aws.endpoints.huggingface.cloud/', | |
| # 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
| #'meta-llama/Llama-3.2-1B-Instruct', ## Does a poor job of interpreting my questions and matching them to the tools | |
| # Add here wherever model is working for you | |
| ] | |
| def is_model_overloaded(model_url): | |
| """Verify if the model is overloaded doing a test call.""" | |
| try: | |
| response = requests.post(model_url, json={"inputs": "Test"}) | |
| if verbose: | |
| print(response.status_code) | |
| if response.status_code == 503: # 503 Service Unavailable = Overloaded | |
| return True | |
| if response.status_code == 404: # 404 Client Error: Not Found | |
| return True | |
| if response.status_code == 424: # 424 Client Error: Failed Dependency for url: | |
| return True | |
| return False | |
| except requests.RequestException: | |
| return True # if there are an error is overloaded | |
| def get_available_model(): | |
| """Select the first model available from the list.""" | |
| for model_url in MODEL_IDS: | |
| print("trying",model_url) | |
| if not is_model_overloaded(model_url): | |
| return model_url | |
| return MODEL_IDS[0] # if all are failing, use the first model by dfault | |
| if verbose: print("Checking available models.") | |
| selected_model_id = get_available_model() | |
| if verbose: print(f"Selected: {selected_model_id}") | |
| model = HfApiModel( | |
| max_tokens=1048, | |
| temperature=0.5, | |
| #model_id='meta-llama/Llama-3.2-1B-Instruct', | |
| #model_id='Qwen/Qwen2.5-Coder-32B-Instruct', | |
| #model_id = 'Qwen/Qwen2.5-Coder-1.5B-Instruct', | |
| model_id = selected_model_id, # model available selected from the list automatically | |
| custom_role_conversions=None, | |
| ) | |
| ################################## AGENT SETUP ################################################ | |
| # Import tool from Hub | |
| image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
| with open("prompts.yaml", 'r') as stream: | |
| prompt_templates = yaml.safe_load(stream) | |
| agent = CodeAgent( | |
| model=model, | |
| tools=[final_answer, image_generation_tool, get_current_time_in_timezone, fetch_active_crypto], ## add your tools here (don't remove final answer) | |
| max_steps=6, | |
| verbosity_level=1, | |
| grammar=None, | |
| planning_interval=None, | |
| name=None, | |
| description=None, | |
| prompt_templates=prompt_templates | |
| ) | |
| GradioUI(agent).launch() |