File size: 38,078 Bytes
33cfa2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
"""Generation handler for Flow2API"""
import asyncio
import base64
import json
import time
from typing import Optional, AsyncGenerator, List, Dict, Any
from ..core.logger import debug_logger
from ..core.config import config
from ..core.models import Task, RequestLog
from .file_cache import FileCache
# Model configuration
MODEL_CONFIG = {
# 图片生成 - GEM_PIX (Gemini 2.5 Flash)
"gemini-2.5-flash-image-landscape": {
"type": "image",
"model_name": "GEM_PIX",
"aspect_ratio": "IMAGE_ASPECT_RATIO_LANDSCAPE"
},
"gemini-2.5-flash-image-portrait": {
"type": "image",
"model_name": "GEM_PIX",
"aspect_ratio": "IMAGE_ASPECT_RATIO_PORTRAIT"
},
# 图片生成 - GEM_PIX_2 (Gemini 3.0 Pro)
"gemini-3.0-pro-image-landscape": {
"type": "image",
"model_name": "GEM_PIX_2",
"aspect_ratio": "IMAGE_ASPECT_RATIO_LANDSCAPE"
},
"gemini-3.0-pro-image-portrait": {
"type": "image",
"model_name": "GEM_PIX_2",
"aspect_ratio": "IMAGE_ASPECT_RATIO_PORTRAIT"
},
# 图片生成 - IMAGEN_3_5 (Imagen 4.0)
"imagen-4.0-generate-preview-landscape": {
"type": "image",
"model_name": "IMAGEN_3_5",
"aspect_ratio": "IMAGE_ASPECT_RATIO_LANDSCAPE"
},
"imagen-4.0-generate-preview-portrait": {
"type": "image",
"model_name": "IMAGEN_3_5",
"aspect_ratio": "IMAGE_ASPECT_RATIO_PORTRAIT"
},
# ========== 文生视频 (T2V - Text to Video) ==========
# 不支持上传图片,只使用文本提示词生成
# veo_3_1_t2v_fast_portrait (竖屏)
# 上游模型名: veo_3_1_t2v_fast_portrait
"veo_3_1_t2v_fast_portrait": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_3_1_t2v_fast_portrait",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": False
},
# veo_3_1_t2v_fast_landscape (横屏)
# 上游模型名: veo_3_1_t2v_fast
"veo_3_1_t2v_fast_landscape": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_3_1_t2v_fast",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": False
},
# veo_2_1_fast_d_15_t2v (需要新增横竖屏)
"veo_2_1_fast_d_15_t2v_portrait": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_2_1_fast_d_15_t2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": False
},
"veo_2_1_fast_d_15_t2v_landscape": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_2_1_fast_d_15_t2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": False
},
# veo_2_0_t2v (需要新增横竖屏)
"veo_2_0_t2v_portrait": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_2_0_t2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": False
},
"veo_2_0_t2v_landscape": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_2_0_t2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": False
},
# veo_3_1_t2v_fast_portrait_ultra (竖屏)
"veo_3_1_t2v_fast_portrait_ultra": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_3_1_t2v_fast_portrait_ultra",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": False
},
# veo_3_1_t2v_fast_portrait_ultra_relaxed (竖屏)
"veo_3_1_t2v_fast_portrait_ultra_relaxed": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_3_1_t2v_fast_portrait_ultra_relaxed",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": False
},
# veo_3_1_t2v_portrait (竖屏)
"veo_3_1_t2v_portrait": {
"type": "video",
"video_type": "t2v",
"model_key": "veo_3_1_t2v_portrait",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": False
},
# ========== 首尾帧模型 (I2V - Image to Video) ==========
# 支持1-2张图片:1张作为首帧,2张作为首尾帧
# veo_3_1_i2v_s_fast_fl (需要新增横竖屏)
"veo_3_1_i2v_s_fast_fl_portrait": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s_fast_fl",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
"veo_3_1_i2v_s_fast_fl_landscape": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s_fast_fl",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
# veo_2_1_fast_d_15_i2v (需要新增横竖屏)
"veo_2_1_fast_d_15_i2v_portrait": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_2_1_fast_d_15_i2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
"veo_2_1_fast_d_15_i2v_landscape": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_2_1_fast_d_15_i2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
# veo_2_0_i2v (需要新增横竖屏)
"veo_2_0_i2v_portrait": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_2_0_i2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
"veo_2_0_i2v_landscape": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_2_0_i2v",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
# veo_3_1_i2v_s_fast_ultra (需要新增横竖屏)
"veo_3_1_i2v_s_fast_ultra_portrait": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s_fast_ultra",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
"veo_3_1_i2v_s_fast_ultra_landscape": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s_fast_ultra",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
# veo_3_1_i2v_s_fast_ultra_relaxed (需要新增横竖屏)
"veo_3_1_i2v_s_fast_ultra_relaxed_portrait": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s_fast_ultra_relaxed",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
"veo_3_1_i2v_s_fast_ultra_relaxed_landscape": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s_fast_ultra_relaxed",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
# veo_3_1_i2v_s (需要新增横竖屏)
"veo_3_1_i2v_s_portrait": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
"veo_3_1_i2v_s_landscape": {
"type": "video",
"video_type": "i2v",
"model_key": "veo_3_1_i2v_s",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 1,
"max_images": 2
},
# ========== 多图生成 (R2V - Reference Images to Video) ==========
# 支持多张图片,不限制数量
# veo_3_0_r2v_fast (需要新增横竖屏)
"veo_3_0_r2v_fast_portrait": {
"type": "video",
"video_type": "r2v",
"model_key": "veo_3_0_r2v_fast",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 0,
"max_images": None # 不限制
},
"veo_3_0_r2v_fast_landscape": {
"type": "video",
"video_type": "r2v",
"model_key": "veo_3_0_r2v_fast",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 0,
"max_images": None # 不限制
},
# veo_3_0_r2v_fast_ultra (需要新增横竖屏)
"veo_3_0_r2v_fast_ultra_portrait": {
"type": "video",
"video_type": "r2v",
"model_key": "veo_3_0_r2v_fast_ultra",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 0,
"max_images": None # 不限制
},
"veo_3_0_r2v_fast_ultra_landscape": {
"type": "video",
"video_type": "r2v",
"model_key": "veo_3_0_r2v_fast_ultra",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 0,
"max_images": None # 不限制
},
# veo_3_0_r2v_fast_ultra_relaxed (需要新增横竖屏)
"veo_3_0_r2v_fast_ultra_relaxed_portrait": {
"type": "video",
"video_type": "r2v",
"model_key": "veo_3_0_r2v_fast_ultra_relaxed",
"aspect_ratio": "VIDEO_ASPECT_RATIO_PORTRAIT",
"supports_images": True,
"min_images": 0,
"max_images": None # 不限制
},
"veo_3_0_r2v_fast_ultra_relaxed_landscape": {
"type": "video",
"video_type": "r2v",
"model_key": "veo_3_0_r2v_fast_ultra_relaxed",
"aspect_ratio": "VIDEO_ASPECT_RATIO_LANDSCAPE",
"supports_images": True,
"min_images": 0,
"max_images": None # 不限制
}
}
class GenerationHandler:
"""统一生成处理器"""
def __init__(self, flow_client, token_manager, load_balancer, db, concurrency_manager, proxy_manager):
self.flow_client = flow_client
self.token_manager = token_manager
self.load_balancer = load_balancer
self.db = db
self.concurrency_manager = concurrency_manager
self.file_cache = FileCache(
cache_dir="tmp",
default_timeout=config.cache_timeout,
proxy_manager=proxy_manager
)
async def check_token_availability(self, is_image: bool, is_video: bool) -> bool:
"""检查Token可用性
Args:
is_image: 是否检查图片生成Token
is_video: 是否检查视频生成Token
Returns:
True表示有可用Token, False表示无可用Token
"""
token_obj = await self.load_balancer.select_token(
for_image_generation=is_image,
for_video_generation=is_video
)
return token_obj is not None
async def handle_generation(
self,
model: str,
prompt: str,
images: Optional[List[bytes]] = None,
stream: bool = False
) -> AsyncGenerator:
"""统一生成入口
Args:
model: 模型名称
prompt: 提示词
images: 图片列表 (bytes格式)
stream: 是否流式输出
"""
start_time = time.time()
token = None
# 1. 验证模型
if model not in MODEL_CONFIG:
error_msg = f"不支持的模型: {model}"
debug_logger.log_error(error_msg)
yield self._create_error_response(error_msg)
return
model_config = MODEL_CONFIG[model]
generation_type = model_config["type"]
debug_logger.log_info(f"[GENERATION] 开始生成 - 模型: {model}, 类型: {generation_type}, Prompt: {prompt[:50]}...")
# 非流式模式: 只检查可用性
if not stream:
is_image = (generation_type == "image")
is_video = (generation_type == "video")
available = await self.check_token_availability(is_image, is_video)
if available:
if is_image:
message = "所有Token可用于图片生成。请启用流式模式使用生成功能。"
else:
message = "所有Token可用于视频生成。请启用流式模式使用生成功能。"
else:
if is_image:
message = "没有可用的Token进行图片生成"
else:
message = "没有可用的Token进行视频生成"
yield self._create_completion_response(message, is_availability_check=True)
return
# 向用户展示开始信息
if stream:
yield self._create_stream_chunk(
f"✨ {'视频' if generation_type == 'video' else '图片'}生成任务已启动\n",
role="assistant"
)
# 2. 选择Token
debug_logger.log_info(f"[GENERATION] 正在选择可用Token...")
if generation_type == "image":
token = await self.load_balancer.select_token(for_image_generation=True, model=model)
else:
token = await self.load_balancer.select_token(for_video_generation=True, model=model)
if not token:
error_msg = self._get_no_token_error_message(generation_type)
debug_logger.log_error(f"[GENERATION] {error_msg}")
if stream:
yield self._create_stream_chunk(f"❌ {error_msg}\n")
yield self._create_error_response(error_msg)
return
debug_logger.log_info(f"[GENERATION] 已选择Token: {token.id} ({token.email})")
try:
# 3. 确保AT有效
debug_logger.log_info(f"[GENERATION] 检查Token AT有效性...")
if stream:
yield self._create_stream_chunk("初始化生成环境...\n")
if not await self.token_manager.is_at_valid(token.id):
error_msg = "Token AT无效或刷新失败"
debug_logger.log_error(f"[GENERATION] {error_msg}")
if stream:
yield self._create_stream_chunk(f"❌ {error_msg}\n")
yield self._create_error_response(error_msg)
return
# 重新获取token (AT可能已刷新)
token = await self.token_manager.get_token(token.id)
# 4. 确保Project存在
debug_logger.log_info(f"[GENERATION] 检查/创建Project...")
project_id = await self.token_manager.ensure_project_exists(token.id)
debug_logger.log_info(f"[GENERATION] Project ID: {project_id}")
# 5. 根据类型处理
if generation_type == "image":
debug_logger.log_info(f"[GENERATION] 开始图片生成流程...")
async for chunk in self._handle_image_generation(
token, project_id, model_config, prompt, images, stream
):
yield chunk
else: # video
debug_logger.log_info(f"[GENERATION] 开始视频生成流程...")
async for chunk in self._handle_video_generation(
token, project_id, model_config, prompt, images, stream
):
yield chunk
# 6. 记录使用
is_video = (generation_type == "video")
await self.token_manager.record_usage(token.id, is_video=is_video)
# 重置错误计数 (请求成功时清空连续错误计数)
await self.token_manager.record_success(token.id)
debug_logger.log_info(f"[GENERATION] ✅ 生成成功完成")
# 7. 记录成功日志
duration = time.time() - start_time
# 构建响应数据,包含生成的URL
response_data = {
"status": "success",
"model": model,
"prompt": prompt[:100]
}
# 添加生成的URL(如果有)
if hasattr(self, '_last_generated_url') and self._last_generated_url:
response_data["url"] = self._last_generated_url
# 清除临时存储
self._last_generated_url = None
await self._log_request(
token.id,
f"generate_{generation_type}",
{"model": model, "prompt": prompt[:100], "has_images": images is not None and len(images) > 0},
response_data,
200,
duration
)
except Exception as e:
error_msg = f"生成失败: {str(e)}"
debug_logger.log_error(f"[GENERATION] ❌ {error_msg}")
if stream:
yield self._create_stream_chunk(f"❌ {error_msg}\n")
if token:
# 记录错误(所有错误统一处理,不再特殊处理429)
await self.token_manager.record_error(token.id)
yield self._create_error_response(error_msg)
# 记录失败日志
duration = time.time() - start_time
await self._log_request(
token.id if token else None,
f"generate_{generation_type if model_config else 'unknown'}",
{"model": model, "prompt": prompt[:100], "has_images": images is not None and len(images) > 0},
{"error": error_msg},
500,
duration
)
def _get_no_token_error_message(self, generation_type: str) -> str:
"""获取无可用Token时的详细错误信息"""
if generation_type == "image":
return "没有可用的Token进行图片生成。所有Token都处于禁用、冷却、锁定或已过期状态。"
else:
return "没有可用的Token进行视频生成。所有Token都处于禁用、冷却、配额耗尽或已过期状态。"
async def _handle_image_generation(
self,
token,
project_id: str,
model_config: dict,
prompt: str,
images: Optional[List[bytes]],
stream: bool
) -> AsyncGenerator:
"""处理图片生成 (同步返回)"""
# 获取并发槽位
if self.concurrency_manager:
if not await self.concurrency_manager.acquire_image(token.id):
yield self._create_error_response("图片并发限制已达上限")
return
try:
# 上传图片 (如果有)
image_inputs = []
if images and len(images) > 0:
if stream:
yield self._create_stream_chunk(f"上传 {len(images)} 张参考图片...\n")
# 支持多图输入
for idx, image_bytes in enumerate(images):
media_id = await self.flow_client.upload_image(
token.at,
image_bytes,
model_config["aspect_ratio"]
)
image_inputs.append({
"name": media_id,
"imageInputType": "IMAGE_INPUT_TYPE_REFERENCE"
})
if stream:
yield self._create_stream_chunk(f"已上传第 {idx + 1}/{len(images)} 张图片\n")
# 调用生成API
if stream:
yield self._create_stream_chunk("正在生成图片...\n")
result = await self.flow_client.generate_image(
at=token.at,
project_id=project_id,
prompt=prompt,
model_name=model_config["model_name"],
aspect_ratio=model_config["aspect_ratio"],
image_inputs=image_inputs
)
# 提取URL
media = result.get("media", [])
if not media:
yield self._create_error_response("生成结果为空")
return
image_url = media[0]["image"]["generatedImage"]["fifeUrl"]
# 缓存图片 (如果启用)
local_url = image_url
if config.cache_enabled:
try:
if stream:
yield self._create_stream_chunk("缓存图片中...\n")
cached_filename = await self.file_cache.download_and_cache(image_url, "image")
local_url = f"{self._get_base_url()}/tmp/{cached_filename}"
if stream:
yield self._create_stream_chunk("✅ 图片缓存成功,准备返回缓存地址...\n")
except Exception as e:
debug_logger.log_error(f"Failed to cache image: {str(e)}")
# 缓存失败不影响结果返回,使用原始URL
local_url = image_url
if stream:
yield self._create_stream_chunk(f"⚠️ 缓存失败: {str(e)}\n正在返回源链接...\n")
else:
if stream:
yield self._create_stream_chunk("缓存已关闭,正在返回源链接...\n")
# 返回结果
# 存储URL用于日志记录
self._last_generated_url = local_url
if stream:
yield self._create_stream_chunk(
f"",
finish_reason="stop"
)
else:
yield self._create_completion_response(
local_url, # 直接传URL,让方法内部格式化
media_type="image"
)
finally:
# 释放并发槽位
if self.concurrency_manager:
await self.concurrency_manager.release_image(token.id)
async def _handle_video_generation(
self,
token,
project_id: str,
model_config: dict,
prompt: str,
images: Optional[List[bytes]],
stream: bool
) -> AsyncGenerator:
"""处理视频生成 (异步轮询)"""
# 获取并发槽位
if self.concurrency_manager:
if not await self.concurrency_manager.acquire_video(token.id):
yield self._create_error_response("视频并发限制已达上限")
return
try:
# 获取模型类型和配置
video_type = model_config.get("video_type")
supports_images = model_config.get("supports_images", False)
min_images = model_config.get("min_images", 0)
max_images = model_config.get("max_images", 0)
# 图片数量
image_count = len(images) if images else 0
# ========== 验证和处理图片 ==========
# T2V: 文生视频 - 不支持图片
if video_type == "t2v":
if image_count > 0:
if stream:
yield self._create_stream_chunk("⚠️ 文生视频模型不支持上传图片,将忽略图片仅使用文本提示词生成\n")
debug_logger.log_warning(f"[T2V] 模型 {model_config['model_key']} 不支持图片,已忽略 {image_count} 张图片")
images = None # 清空图片
image_count = 0
# I2V: 首尾帧模型 - 需要1-2张图片
elif video_type == "i2v":
if image_count < min_images or image_count > max_images:
error_msg = f"❌ 首尾帧模型需要 {min_images}-{max_images} 张图片,当前提供了 {image_count} 张"
if stream:
yield self._create_stream_chunk(f"{error_msg}\n")
yield self._create_error_response(error_msg)
return
# R2V: 多图生成 - 支持多张图片,不限制数量
elif video_type == "r2v":
# 不再限制最大图片数量
pass
# ========== 上传图片 ==========
start_media_id = None
end_media_id = None
reference_images = []
# I2V: 首尾帧处理
if video_type == "i2v" and images:
if image_count == 1:
# 只有1张图: 仅作为首帧
if stream:
yield self._create_stream_chunk("上传首帧图片...\n")
start_media_id = await self.flow_client.upload_image(
token.at, images[0], model_config["aspect_ratio"]
)
debug_logger.log_info(f"[I2V] 仅上传首帧: {start_media_id}")
elif image_count == 2:
# 2张图: 首帧+尾帧
if stream:
yield self._create_stream_chunk("上传首帧和尾帧图片...\n")
start_media_id = await self.flow_client.upload_image(
token.at, images[0], model_config["aspect_ratio"]
)
end_media_id = await self.flow_client.upload_image(
token.at, images[1], model_config["aspect_ratio"]
)
debug_logger.log_info(f"[I2V] 上传首尾帧: {start_media_id}, {end_media_id}")
# R2V: 多图处理
elif video_type == "r2v" and images:
if stream:
yield self._create_stream_chunk(f"上传 {image_count} 张参考图片...\n")
for idx, img in enumerate(images): # 上传所有图片,不限制数量
media_id = await self.flow_client.upload_image(
token.at, img, model_config["aspect_ratio"]
)
reference_images.append({
"imageUsageType": "IMAGE_USAGE_TYPE_ASSET",
"mediaId": media_id
})
debug_logger.log_info(f"[R2V] 上传了 {len(reference_images)} 张参考图片")
# ========== 调用生成API ==========
if stream:
yield self._create_stream_chunk("提交视频生成任务...\n")
# I2V: 首尾帧生成
if video_type == "i2v" and start_media_id:
if end_media_id:
# 有首尾帧
result = await self.flow_client.generate_video_start_end(
at=token.at,
project_id=project_id,
prompt=prompt,
model_key=model_config["model_key"],
aspect_ratio=model_config["aspect_ratio"],
start_media_id=start_media_id,
end_media_id=end_media_id,
user_paygate_tier=token.user_paygate_tier or "PAYGATE_TIER_ONE"
)
else:
# 只有首帧
result = await self.flow_client.generate_video_start_image(
at=token.at,
project_id=project_id,
prompt=prompt,
model_key=model_config["model_key"],
aspect_ratio=model_config["aspect_ratio"],
start_media_id=start_media_id,
user_paygate_tier=token.user_paygate_tier or "PAYGATE_TIER_ONE"
)
# R2V: 多图生成
elif video_type == "r2v" and reference_images:
result = await self.flow_client.generate_video_reference_images(
at=token.at,
project_id=project_id,
prompt=prompt,
model_key=model_config["model_key"],
aspect_ratio=model_config["aspect_ratio"],
reference_images=reference_images,
user_paygate_tier=token.user_paygate_tier or "PAYGATE_TIER_ONE"
)
# T2V 或 R2V无图: 纯文本生成
else:
result = await self.flow_client.generate_video_text(
at=token.at,
project_id=project_id,
prompt=prompt,
model_key=model_config["model_key"],
aspect_ratio=model_config["aspect_ratio"],
user_paygate_tier=token.user_paygate_tier or "PAYGATE_TIER_ONE"
)
# 获取task_id和operations
operations = result.get("operations", [])
if not operations:
yield self._create_error_response("生成任务创建失败")
return
operation = operations[0]
task_id = operation["operation"]["name"]
scene_id = operation.get("sceneId")
# 保存Task到数据库
task = Task(
task_id=task_id,
token_id=token.id,
model=model_config["model_key"],
prompt=prompt,
status="processing",
scene_id=scene_id
)
await self.db.create_task(task)
# 轮询结果
if stream:
yield self._create_stream_chunk(f"视频生成中...\n")
async for chunk in self._poll_video_result(token, operations, stream):
yield chunk
finally:
# 释放并发槽位
if self.concurrency_manager:
await self.concurrency_manager.release_video(token.id)
async def _poll_video_result(
self,
token,
operations: List[Dict],
stream: bool
) -> AsyncGenerator:
"""轮询视频生成结果"""
max_attempts = config.max_poll_attempts
poll_interval = config.poll_interval
for attempt in range(max_attempts):
await asyncio.sleep(poll_interval)
try:
result = await self.flow_client.check_video_status(token.at, operations)
checked_operations = result.get("operations", [])
if not checked_operations:
continue
operation = checked_operations[0]
status = operation.get("status")
# 状态更新 - 每20秒报告一次 (poll_interval=3秒, 20秒约7次轮询)
progress_update_interval = 7 # 每7次轮询 = 21秒
if stream and attempt % progress_update_interval == 0: # 每20秒报告一次
progress = min(int((attempt / max_attempts) * 100), 95)
yield self._create_stream_chunk(f"生成进度: {progress}%\n")
# 检查状态
if status == "MEDIA_GENERATION_STATUS_SUCCESSFUL":
# 成功
metadata = operation["operation"].get("metadata", {})
video_info = metadata.get("video", {})
video_url = video_info.get("fifeUrl")
if not video_url:
yield self._create_error_response("视频URL为空")
return
# 缓存视频 (如果启用)
local_url = video_url
if config.cache_enabled:
try:
if stream:
yield self._create_stream_chunk("正在缓存视频文件...\n")
cached_filename = await self.file_cache.download_and_cache(video_url, "video")
local_url = f"{self._get_base_url()}/tmp/{cached_filename}"
if stream:
yield self._create_stream_chunk("✅ 视频缓存成功,准备返回缓存地址...\n")
except Exception as e:
debug_logger.log_error(f"Failed to cache video: {str(e)}")
# 缓存失败不影响结果返回,使用原始URL
local_url = video_url
if stream:
yield self._create_stream_chunk(f"⚠️ 缓存失败: {str(e)}\n正在返回源链接...\n")
else:
if stream:
yield self._create_stream_chunk("缓存已关闭,正在返回源链接...\n")
# 更新数据库
task_id = operation["operation"]["name"]
await self.db.update_task(
task_id,
status="completed",
progress=100,
result_urls=[local_url],
completed_at=time.time()
)
# 存储URL用于日志记录
self._last_generated_url = local_url
# 返回结果
if stream:
yield self._create_stream_chunk(
f"<video src='{local_url}' controls style='max-width:100%'></video>",
finish_reason="stop"
)
else:
yield self._create_completion_response(
local_url, # 直接传URL,让方法内部格式化
media_type="video"
)
return
elif status.startswith("MEDIA_GENERATION_STATUS_ERROR"):
# 失败
yield self._create_error_response(f"视频生成失败: {status}")
return
except Exception as e:
debug_logger.log_error(f"Poll error: {str(e)}")
continue
# 超时
yield self._create_error_response(f"视频生成超时 (已轮询{max_attempts}次)")
# ========== 响应格式化 ==========
def _create_stream_chunk(self, content: str, role: str = None, finish_reason: str = None) -> str:
"""创建流式响应chunk"""
import json
import time
chunk = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": "flow2api",
"choices": [{
"index": 0,
"delta": {},
"finish_reason": finish_reason
}]
}
if role:
chunk["choices"][0]["delta"]["role"] = role
if finish_reason:
chunk["choices"][0]["delta"]["content"] = content
else:
chunk["choices"][0]["delta"]["reasoning_content"] = content
return f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
def _create_completion_response(self, content: str, media_type: str = "image", is_availability_check: bool = False) -> str:
"""创建非流式响应
Args:
content: 媒体URL或纯文本消息
media_type: 媒体类型 ("image" 或 "video")
is_availability_check: 是否为可用性检查响应 (纯文本消息)
Returns:
JSON格式的响应
"""
import json
import time
# 可用性检查: 返回纯文本消息
if is_availability_check:
formatted_content = content
else:
# 媒体生成: 根据媒体类型格式化内容为Markdown
if media_type == "video":
formatted_content = f"```html\n<video src='{content}' controls></video>\n```"
else: # image
formatted_content = f""
response = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "flow2api",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": formatted_content
},
"finish_reason": "stop"
}]
}
return json.dumps(response, ensure_ascii=False)
def _create_error_response(self, error_message: str) -> str:
"""创建错误响应"""
import json
error = {
"error": {
"message": error_message,
"type": "invalid_request_error",
"code": "generation_failed"
}
}
return json.dumps(error, ensure_ascii=False)
def _get_base_url(self) -> str:
"""获取基础URL用于缓存文件访问"""
# 优先使用配置的cache_base_url
if config.cache_base_url:
return config.cache_base_url
# 否则使用服务器地址
return f"http://{config.server_host}:{config.server_port}"
async def _log_request(
self,
token_id: Optional[int],
operation: str,
request_data: Dict[str, Any],
response_data: Dict[str, Any],
status_code: int,
duration: float
):
"""记录请求到数据库"""
try:
log = RequestLog(
token_id=token_id,
operation=operation,
request_body=json.dumps(request_data, ensure_ascii=False),
response_body=json.dumps(response_data, ensure_ascii=False),
status_code=status_code,
duration=duration
)
await self.db.add_request_log(log)
except Exception as e:
# 日志记录失败不影响主流程
debug_logger.log_error(f"Failed to log request: {e}")
|