Spaces:
Sleeping
Sleeping
| import torch.nn as nn | |
| import torch | |
| __all__ = ['SharedMLP'] | |
| class Swish(nn.Module): | |
| def forward(self,x): | |
| return x * torch.sigmoid(x) | |
| class SharedMLP(nn.Module): | |
| def __init__(self, in_channels, out_channels, dim=1): | |
| super().__init__() | |
| if dim == 1: # default value | |
| conv = nn.Conv1d | |
| bn = nn.GroupNorm | |
| elif dim == 2: | |
| conv = nn.Conv2d | |
| bn = nn.GroupNorm | |
| else: | |
| raise ValueError | |
| if not isinstance(out_channels, (list, tuple)): | |
| out_channels = [out_channels] | |
| layers = [] | |
| for oc in out_channels: | |
| layers.extend([ | |
| conv(in_channels, oc, 1), | |
| bn(8, oc), | |
| Swish(), | |
| ]) | |
| in_channels = oc | |
| self.layers = nn.Sequential(*layers) | |
| def forward(self, inputs): | |
| if isinstance(inputs, (list, tuple)): | |
| return (self.layers(inputs[0]), *inputs[1:]) | |
| else: | |
| return self.layers(inputs) | |