Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from . import functional as F | |
| __all__ = ['Voxelization'] | |
| class Voxelization(nn.Module): | |
| def __init__(self, resolution, normalize=True, eps=0): | |
| super().__init__() | |
| self.r = int(resolution) | |
| self.normalize = normalize | |
| self.eps = eps | |
| def forward(self, features, coords): | |
| coords = coords.detach() | |
| norm_coords = coords - coords.mean(2, keepdim=True) | |
| if self.normalize: | |
| norm_coords = norm_coords / (norm_coords.norm(dim=1, keepdim=True).max(dim=2, keepdim=True).values * 2.0 + self.eps) + 0.5 # within a unit cube of size 1x1x1 | |
| else: | |
| norm_coords = (norm_coords + 1) / 2.0 | |
| norm_coords = torch.clamp(norm_coords * self.r, 0, self.r - 1) | |
| vox_coords = torch.round(norm_coords).to(torch.int32) | |
| return F.avg_voxelize(features, vox_coords, self.r), norm_coords | |
| def extra_repr(self): | |
| return 'resolution={}{}'.format(self.r, ', normalized eps = {}'.format(self.eps) if self.normalize else '') | |