File size: 15,125 Bytes
ff50632 a9a6d6c 9166423 a9a6d6c 9166423 a9a6d6c 9166423 a9a6d6c 9166423 a9a6d6c ff50632 a9a6d6c 8d3a706 a9a6d6c 9166423 27e2c4b ff50632 e9e935d ff50632 8d3a706 ff50632 3c70d69 ff50632 8d3a706 ff50632 8d3a706 ff50632 e9e935d ff50632 e9e935d ff50632 e9e935d ff50632 4af46a8 ff50632 8d3a706 ff50632 8d3a706 ff50632 d89f54b ff50632 8d3a706 ff50632 8d3a706 ff50632 acfd98c ff50632 a9a6d6c 9166423 a9a6d6c ff50632 9166423 acfd98c ff50632 9166423 ff50632 9166423 ff50632 9166423 ff50632 bc9f1ce ff50632 bc9f1ce ff50632 e9e935d ff50632 8d3a706 ff50632 9166423 a9a6d6c 9166423 a9a6d6c ff50632 e9e935d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import spaces # for ZeroGPU support
import gradio as gr
import pandas as pd
import numpy as np
import torch
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer
)
# βββ MODEL SETUP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Default to 8B but keep both variants resident on the GPU.
DEFAULT_MODEL_NAME = "ChatTS-8B"
AVAILABLE_MODEL_NAMES = [
"ChatTS-8B",
"ChatTS-14B"
]
MODEL_REGISTRY = {}
for name in AVAILABLE_MODEL_NAMES:
print(f"Loading model into memory: {name}")
model_path = "bytedance-research/" + name
tok = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
proc = AutoProcessor.from_pretrained(model_path, trust_remote_code=True, tokenizer=tok)
mdl = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16
)
mdl.eval()
MODEL_REGISTRY[name] = {
"tokenizer": tok,
"processor": proc,
"model": mdl
}
CURRENT_MODEL_NAME = DEFAULT_MODEL_NAME
tokenizer = MODEL_REGISTRY[CURRENT_MODEL_NAME]["tokenizer"]
processor = MODEL_REGISTRY[CURRENT_MODEL_NAME]["processor"]
model = MODEL_REGISTRY[CURRENT_MODEL_NAME]["model"]
def load_model_by_name(name: str):
"""Activate the preloaded model by name without reloading weights."""
global tokenizer, processor, model, CURRENT_MODEL_NAME
if name not in MODEL_REGISTRY:
return f"Model not available: {name}"
if name == CURRENT_MODEL_NAME:
return f"Model already selected: {name}"
CURRENT_MODEL_NAME = name
tokenizer = MODEL_REGISTRY[name]["tokenizer"]
processor = MODEL_REGISTRY[name]["processor"]
model = MODEL_REGISTRY[name]["model"]
model.eval()
print(f"Activated model: {name}")
return name
def switch_model(selected_model_name: str):
"""Wrapper for Gradio to switch models via radio selection."""
# Activate the model but do not return values (Gradio expects 0 outputs here).
_ = load_model_by_name(selected_model_name)
return None
# βββ HELPER FUNCTIONS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_default_timeseries():
"""Create default time series with sudden increase"""
x1 = np.arange(256)
x2 = np.arange(256)
ts1 = np.sin(x1 / 10) * 5.0
ts1[103:] -= 10.0
ts2 = x2 * 0.01
ts2[100] += 10.0
df = pd.DataFrame({
"TS1": ts1,
"TS2": ts2
})
return df
def process_csv_file(csv_file):
"""Process CSV file and return DataFrame with validation"""
if csv_file is None:
return None, "No file uploaded"
try:
df = pd.read_csv(csv_file.name)
# drop columns with empty names or all-NaNs
df.columns = [str(c).strip() for c in df.columns]
df = df.loc[:, [c for c in df.columns if c]]
df = df.dropna(axis=1, how="all")
print(f"[LOG] File {csv_file.name} loaded. {df.columns=}")
if df.shape[1] == 0:
return None, "No valid time-series columns found."
if df.shape[1] > 15:
return None, f"Too many series ({df.shape[1]}). Max allowed = 15."
# Validate ALL columns as time series
ts_names, ts_list = [], []
for name in df.columns:
series = df[name]
# ensure float dtype
if not pd.api.types.is_float_dtype(series):
try:
series = pd.to_numeric(series, errors='coerce')
except:
return None, f"Series '{name}' cannot be converted to float type."
# trim trailing NaNs only
last_valid = series.last_valid_index()
if last_valid is None:
continue
trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
length = trimmed.shape[0]
if length < 16 or length > 1024:
return None, f"Series '{name}' length {length} invalid. Must be 16 to 1024."
ts_names.append(name)
ts_list.append(trimmed)
if not ts_list:
return None, "All time series are empty after trimming NaNs."
# print(f"Successfully loaded {len(ts_names)} time series: {', '.join(ts_names)}")
return df, f"Successfully loaded {len(ts_names)} time series: {', '.join(ts_names)}"
except Exception as e:
return None, f"Error processing file: {str(e)}"
def preview_csv(csv_file, use_default):
"""Preview uploaded CSV file immediately"""
if csv_file is None:
return gr.LinePlot(value=pd.DataFrame()), "Please upload a CSV file first", gr.Dropdown(), False
df, message = process_csv_file(csv_file)
if df is None:
return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown(), False
# Create dropdown choices
column_choices = list(df.columns)
# Create plot with first column as default
first_column = column_choices[0]
df_with_index = df.copy()
df_with_index["_internal_idx"] = np.arange(len(df[first_column].values))
plot = gr.LinePlot(
df_with_index,
x="_internal_idx",
y=first_column,
title=f"Time Series: {first_column}"
)
# Update dropdown
dropdown = gr.Dropdown(
choices=column_choices,
value=first_column,
label="Select a Column to Visualize"
)
# print("Successfully generated preview!")
return plot, message, dropdown, False # Set use_default to False when file is uploaded
def clear_csv():
"""Clear uploaded CSV file immediately"""
df, message = process_csv_file(None)
return gr.LinePlot(value=pd.DataFrame()), message, gr.Dropdown()
def update_plot(csv_file, selected_column, use_default_state):
"""Update plot based on selected column"""
if (csv_file is None and not use_default_state) or selected_column is None :
return gr.LinePlot(value=pd.DataFrame())
if csv_file is None and use_default_state:
df = create_default_timeseries()
else:
df, _ = process_csv_file(csv_file)
if df is None:
return gr.LinePlot(value=pd.DataFrame())
df_with_index = df.copy()
df_with_index["_internal_idx"] = np.arange(len(df[selected_column].values))
plot = gr.LinePlot(
df_with_index,
x="_internal_idx",
y=selected_column,
title=f"Time Series: {selected_column}"
)
return plot
def initialize_interface():
"""Initialize interface with default time series"""
df = create_default_timeseries()
column_choices = list(df.columns)
first_column = column_choices[0]
df_with_index = df.copy()
df_with_index["_internal_idx"] = np.arange(len(df[first_column].values))
plot = gr.LinePlot(
df_with_index,
x="_internal_idx",
y=first_column,
title=f"Time Series: {first_column}"
)
dropdown = gr.Dropdown(
choices=column_choices,
value=first_column,
label="Select a Column to Visualize"
)
message = "Using default time series (TS1 and TS2). Please select a time series from the dropdown box above for visualization."
return plot, message, dropdown, True # Set use_default to True on initialization
# βββ INFERENCE + VALIDATION ββββββββββββββββββββββββββββββββββββββββββββββββββββ
@spaces.GPU # dynamically allocate & release a ZeroGPU device on each call
def infer_chatts_stream(prompt: str, csv_file, use_default, model_name):
"""
Streaming version of ChatTS inference
"""
# Activate the selected model
switch_model(model_name)
# print("Start inferring!!!")
if not prompt.strip():
yield "Please enter a prompt"
return
# Use default if no file uploaded and use_default is True
if csv_file is None and use_default:
df = create_default_timeseries()
error_msg = None
else:
df, error_msg = process_csv_file(csv_file)
if df is None:
yield "Please upload a CSV file first or the file contains errors"
return
try:
# Prepare time series data - use ALL columns
ts_names, ts_list = [], []
for name in df.columns:
series = df[name]
last_valid = series.last_valid_index()
if last_valid is not None:
trimmed = series.loc[:last_valid].to_numpy(dtype=np.float32)
ts_names.append(name)
ts_list.append(trimmed)
if not ts_list:
yield "No valid time series data found. Please upload time series first."
return
# Clean prompt
clean_prompt = prompt.replace("<ts>", "").replace("<ts/>", "")
# Build prompt prefix
prefix = f"I have {len(ts_list)} time series:\n"
for name, arr in zip(ts_names, ts_list):
prefix += f"The {name} is of length {len(arr)}: <ts><ts/>\n"
full_prompt = f"<|im_start|>system\nYou are a helpful assistant. Your name is ChatTS. You can analyze time series data and provide insights. If user asks who you are, you should give your name and capabilities in the language of the prompt. If user has no format requirement, always output a step-by-step analysis about the time series attributes that mentioned in the question first, and then give a detailed result about the given question.<|im_end|><|im_start|>user\n{prefix}{clean_prompt}<|im_end|><|im_start|>assistant\n"
print(f"[LOG] model={CURRENT_MODEL_NAME}, {clean_prompt=}, {len(ts_list)=}")
# Encode inputs
inputs = processor(
text=[full_prompt],
timeseries=ts_list,
padding=True,
return_tensors="pt"
)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# if inputs['timeseries'] is not None:
# print(f"[debug] {inputs['timeseries'].shape=}")
# Generate with streaming
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
inputs.update({
"max_new_tokens": 512,
"streamer": streamer,
"temperature": 0.3
})
thread = Thread(
target=model.generate,
kwargs=inputs
)
thread.start()
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
except Exception as e:
yield f"Error during inference: {str(e)}"
# βββ GRADIO APP ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(title="ChatTS Demo") as demo:
gr.Markdown("## ChatTS: Time Series Understanding and Reasoning")
gr.HTML("""<div style="display:flex;justify-content: center">
<a href="https://github.com/NetmanAIOps/ChatTS"><img alt="github" src="https://img.shields.io/badge/Code-GitHub-blue"></a>
<a href="https://huggingface.co/bytedance-research/ChatTS-14B"><img alt="github" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-FFD21E"></a>
<a href="https://arxiv.org/abs/2412.03104"><img alt="preprint" src="https://img.shields.io/static/v1?label=arXiv&message=2412.03104&color=B31B1B&logo=arXiv"></a>
</div>""")
gr.Markdown("Try ChatTS with the default time series, or upload a CSV file (Example: [ts_example.csv](https://github.com/NetManAIOps/ChatTS/blob/main/demo/ts_example.csv)) containing UTS/MTS where each column is a dimension (no index column). All columns will be used as input of ChatTS automatically.")
gr.Markdown("The length should be between 16 and 1024, with 15 time series at most. Please use English to ask questions. If you like ChatTS, kindly star our [GitHub repo](https://github.com/NetmanAIOps/ChatTS).")
# State to track whether to use default time series
use_default_state = gr.State(value=True)
with gr.Row():
with gr.Column(scale=1):
# Model selection UI
model_radio = gr.Radio(
choices=["ChatTS-8B", "ChatTS-14B"],
value=CURRENT_MODEL_NAME,
label="Model Version"
)
upload = gr.File(
label="Upload CSV File",
file_types=[".csv"],
type="filepath",
height=80
)
prompt_input = gr.Textbox(
lines=5,
placeholder="Enter your question here...",
label="Analysis Prompt",
value="Please analyze all the given time series and provide insights about the local fluctuations in the time series in detail."
)
with gr.Column(scale=2):
series_selector = gr.Dropdown(
label="Select a Channel to Visualize (All Channels Will be Input to ChatTS)",
choices=[],
value=None
)
plot_out = gr.LinePlot(value=pd.DataFrame(), label="Channel Visualization (All Channels Will be Input to ChatTS)")
file_status = gr.Textbox(
label="File Status",
interactive=False,
lines=1
)
run_btn = gr.Button("Run ChatTS", variant="primary")
text_out = gr.Textbox(
lines=10,
label="ChatTS Analysis Results",
interactive=False
)
# Initialize interface with default data
demo.load(
fn=initialize_interface,
outputs=[plot_out, file_status, series_selector, use_default_state]
)
# Event handlers
upload.upload(
fn=preview_csv,
inputs=[upload, use_default_state],
outputs=[plot_out, file_status, series_selector, use_default_state]
)
upload.clear(
fn=clear_csv,
inputs=[],
outputs=[plot_out, file_status, series_selector]
)
series_selector.change(
fn=update_plot,
inputs=[upload, series_selector, use_default_state],
outputs=[plot_out]
)
run_btn.click(
fn=infer_chatts_stream,
inputs=[prompt_input, upload, use_default_state, model_radio],
outputs=[text_out]
)
# Model selection reacts immediately; no separate button needed
model_radio.change(
fn=switch_model,
inputs=[model_radio],
outputs=[]
)
if __name__ == '__main__':
demo.launch()
|