xu song
commited on
Commit
·
241f191
1
Parent(s):
dbf8ee3
update
Browse files- app.py +84 -32
- app_util.py +12 -9
- assets//345/245/263/345/256/242/346/234/215.png +0 -0
- models/mock.py +17 -0
app.py
CHANGED
|
@@ -1,28 +1,39 @@
|
|
| 1 |
"""
|
| 2 |
"""
|
| 3 |
import random
|
| 4 |
-
import gradio
|
| 5 |
import config
|
| 6 |
from app_util import *
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
There are maily two types of user simulator:
|
| 12 |
- prompt-based user-simulator (role-play)
|
| 13 |
- model-based user-simulator
|
| 14 |
|
| 15 |
This demo is a model-based user simulator.
|
| 16 |
"""
|
|
|
|
|
|
|
| 17 |
# In most cases, large language models (LLMs) are used to serve as assistant generator.
|
| 18 |
# Besides, it can also used as user simulator.
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
"""
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
It is a combination of user simulator and response generator.
|
| 27 |
"""
|
| 28 |
|
|
@@ -37,12 +48,25 @@ Essentially, it is a form of model compression.
|
|
| 37 |
|
| 38 |
## 有不用概率的知识蒸馏吗?
|
| 39 |
"""
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# Knowledge Distillation through Self Chatting
|
| 43 |
# Distilling the Knowledge from LLM through Self Chatting
|
| 44 |
# Generating Synthetic Data through Self Chat
|
| 45 |
-
gr.HTML("""<h1 align="center">Generating Synthetic Data via Self-
|
| 46 |
with gr.Row():
|
| 47 |
with gr.Column(scale=5):
|
| 48 |
system = gr.Dropdown(
|
|
@@ -56,47 +80,69 @@ with gr.Blocks(head=None) as demo:
|
|
| 56 |
|
| 57 |
chatbot = gr.Chatbot(show_copy_button=True,
|
| 58 |
show_share_button=True,
|
| 59 |
-
avatar_images=("assets/man.png", "assets/bot.png"),
|
|
|
|
| 60 |
likeable=True)
|
| 61 |
|
| 62 |
# gr.Textbox("For faster inference, you can build locally with ")
|
| 63 |
# ss
|
| 64 |
-
with
|
|
|
|
| 65 |
input_text_1 = gr.Textbox(show_label=False, placeholder="...", lines=10, visible=False)
|
| 66 |
-
generate_btn = gr.Button("
|
| 67 |
with gr.Row():
|
| 68 |
-
retry_btn = gr.Button("🔄 Regenerate", variant="secondary", size="sm"
|
| 69 |
-
undo_btn = gr.Button("↩️ Undo", variant="secondary", size="sm"
|
| 70 |
-
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="sm"
|
| 71 |
-
|
| 72 |
-
gr.Markdown(
|
| 73 |
-
|
| 74 |
-
# 也叫 chat-assistant,
|
| 75 |
-
with
|
|
|
|
| 76 |
with gr.Row():
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
with gr.Row():
|
| 80 |
retry_btn_2 = gr.Button("🔄 Regenerate", variant="secondary", size="sm", )
|
| 81 |
undo_btn_2 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
|
| 82 |
-
clear_btn_2 = gr.Button("
|
| 83 |
-
gr.Markdown(
|
| 84 |
|
| 85 |
#
|
| 86 |
-
with
|
|
|
|
| 87 |
with gr.Row():
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
with gr.Row():
|
| 91 |
-
retry_btn_3 = gr.Button("🔄 Regenerate", variant="secondary", size="sm"
|
| 92 |
-
undo_btn_3 = gr.Button("↩️ Undo", variant="secondary", size="sm"
|
| 93 |
-
clear_btn_3 = gr.Button("🗑️ Clear", variant="secondary", size="sm"
|
| 94 |
-
|
|
|
|
| 95 |
|
| 96 |
with gr.Column(variant="compact", scale=1, min_width=300):
|
| 97 |
# with gr.Column():
|
| 98 |
model = gr.Dropdown(
|
| 99 |
-
["Qwen2-0.5B-Instruct", "llama3.1", "gemini"],
|
| 100 |
value="Qwen2-0.5B-Instruct",
|
| 101 |
label="Model",
|
| 102 |
interactive=True,
|
|
@@ -124,6 +170,7 @@ with gr.Blocks(head=None) as demo:
|
|
| 124 |
)
|
| 125 |
|
| 126 |
# TODO: gr.State 不能通过API传参。
|
|
|
|
| 127 |
history = gr.State([{"role": "system", "content": system_list[0]}]) # 有用信息只有个system,其他和chatbot内容重叠
|
| 128 |
system.change(reset_state, inputs=[system], outputs=[chatbot, history])
|
| 129 |
|
|
@@ -147,6 +194,8 @@ with gr.Blocks(head=None) as demo:
|
|
| 147 |
undo_btn_2.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
|
| 148 |
clear_btn_2.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
|
| 149 |
.then(reset_user_input, outputs=[input_text_2], show_api=False)
|
|
|
|
|
|
|
| 150 |
|
| 151 |
######## tab3: user-simulator
|
| 152 |
generate_btn_3.click(append_assistant_to_history, [input_text_3, chatbot, history], outputs=[chatbot, history],
|
|
@@ -160,6 +209,9 @@ with gr.Blocks(head=None) as demo:
|
|
| 160 |
clear_btn_3.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
|
| 161 |
.then(reset_user_input, outputs=[input_text_3], show_api=False)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
| 163 |
slider_max_new_tokens.change(set_max_new_tokens, inputs=[slider_max_new_tokens])
|
| 164 |
slider_temperature.change(set_temperature, inputs=[slider_temperature])
|
| 165 |
slider_top_p.change(set_top_p, inputs=[slider_top_p])
|
|
|
|
| 1 |
"""
|
| 2 |
"""
|
| 3 |
import random
|
|
|
|
| 4 |
import config
|
| 5 |
from app_util import *
|
| 6 |
|
| 7 |
+
user_simulator_pre_doc = """\
|
| 8 |
+
You are a helpful assistant, and the agent acts as user.
|
| 9 |
+
"""
|
| 10 |
|
| 11 |
+
user_simulator_post_doc = """\
|
| 12 |
+
## How does it work?
|
| 13 |
There are maily two types of user simulator:
|
| 14 |
- prompt-based user-simulator (role-play)
|
| 15 |
- model-based user-simulator
|
| 16 |
|
| 17 |
This demo is a model-based user simulator.
|
| 18 |
"""
|
| 19 |
+
|
| 20 |
+
|
| 21 |
# In most cases, large language models (LLMs) are used to serve as assistant generator.
|
| 22 |
# Besides, it can also used as user simulator.
|
| 23 |
|
| 24 |
+
assistant_simulator_pre_doc = """\
|
| 25 |
+
You are a user, and the agent acts as assistant.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
assistant_simulator_post_doc = """\
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
self_chat_pre_doc = """\
|
| 32 |
+
Self-chat is a demo which make the model talk to itself. Dual-agent.
|
| 33 |
"""
|
| 34 |
|
| 35 |
+
self_chat_post_doc = """\
|
| 36 |
+
## How does it work?
|
| 37 |
It is a combination of user simulator and response generator.
|
| 38 |
"""
|
| 39 |
|
|
|
|
| 48 |
|
| 49 |
## 有不用概率的知识蒸馏吗?
|
| 50 |
"""
|
| 51 |
+
gr.set_static_paths(paths=["assets/"])
|
| 52 |
|
| 53 |
+
"""
|
| 54 |
+
<div class="avatar-container"><img src="file=assets/man.png" class="avatar-image" alt="user avatar"></div>
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
css="""
|
| 59 |
+
.image_center {
|
| 60 |
+
display: block;
|
| 61 |
+
margin: auto;
|
| 62 |
+
}
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
with gr.Blocks(head=None, css=css) as demo:
|
| 66 |
# Knowledge Distillation through Self Chatting
|
| 67 |
# Distilling the Knowledge from LLM through Self Chatting
|
| 68 |
# Generating Synthetic Data through Self Chat
|
| 69 |
+
gr.HTML("""<h1 align="center">Generating Synthetic Data via Self-Chatting</h1>""")
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column(scale=5):
|
| 72 |
system = gr.Dropdown(
|
|
|
|
| 80 |
|
| 81 |
chatbot = gr.Chatbot(show_copy_button=True,
|
| 82 |
show_share_button=True,
|
| 83 |
+
# avatar_images=("assets/man.png", "assets/bot.png"),
|
| 84 |
+
avatar_images=("assets/man.png", "assets/女客服.png"),
|
| 85 |
likeable=True)
|
| 86 |
|
| 87 |
# gr.Textbox("For faster inference, you can build locally with ")
|
| 88 |
# ss
|
| 89 |
+
with gr.Tab("Self Chat") as tab_dual_agent:
|
| 90 |
+
gr.Markdown(self_chat_pre_doc)
|
| 91 |
input_text_1 = gr.Textbox(show_label=False, placeholder="...", lines=10, visible=False)
|
| 92 |
+
generate_btn = gr.Button("🤖Self-Chat🤖", variant="primary")
|
| 93 |
with gr.Row():
|
| 94 |
+
retry_btn = gr.Button("🔄 Regenerate", variant="secondary", size="sm")
|
| 95 |
+
undo_btn = gr.Button("↩️ Undo", variant="secondary", size="sm")
|
| 96 |
+
# clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="sm")
|
| 97 |
+
clear_btn = gr.Button("🧹 Clear History", variant="secondary", size="sm")
|
| 98 |
+
gr.Markdown(self_chat_post_doc)
|
| 99 |
+
|
| 100 |
+
# 也叫 chat-assistant, 🎧,🤖 ,💁,
|
| 101 |
+
with gr.Tab("Response Generator") as tab_assistant_agent:
|
| 102 |
+
gr.Markdown(assistant_simulator_pre_doc)
|
| 103 |
with gr.Row():
|
| 104 |
+
# gr.HTML(
|
| 105 |
+
# value='<div><img src="/file=./assets/man.png" alt="Big Boat" width="40px" height="40px"></div>',
|
| 106 |
+
# elem_classes=["image_center"]
|
| 107 |
+
# )
|
| 108 |
+
gr.Image("assets/man.png", interactive=False, show_download_button=False, width=40, height=40,
|
| 109 |
+
min_width=40,
|
| 110 |
+
show_share_button=False, show_fullscreen_button=False, container=False,
|
| 111 |
+
elem_classes=["image_center"])
|
| 112 |
+
input_text_2 = gr.Textbox(show_label=False, lines=2, placeholder="Please type user input",
|
| 113 |
+
container=False, scale=12)
|
| 114 |
+
generate_btn_2 = gr.Button("Send", variant="primary", min_width=80)
|
| 115 |
with gr.Row():
|
| 116 |
retry_btn_2 = gr.Button("🔄 Regenerate", variant="secondary", size="sm", )
|
| 117 |
undo_btn_2 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
|
| 118 |
+
clear_btn_2 = gr.Button("🧹 Clear History", variant="secondary", size="sm")
|
| 119 |
+
gr.Markdown(assistant_simulator_post_doc)
|
| 120 |
|
| 121 |
#
|
| 122 |
+
with gr.Tab("User Simulator") as tab_user_agent: # 👨,🔊,
|
| 123 |
+
gr.Markdown(user_simulator_pre_doc)
|
| 124 |
with gr.Row():
|
| 125 |
+
# gr.HTML(value='<div class="avatar-container"><img src="file=assets/man.png" class="avatar-image" alt="user avatar"></div>')
|
| 126 |
+
# gr.Image("assets/女客服.jpg",
|
| 127 |
+
gr.Image("assets/女客服.png",
|
| 128 |
+
# gr.Image("assets/男客服.png",
|
| 129 |
+
interactive=False, show_download_button=False, width=40, height=40,
|
| 130 |
+
min_width=40,
|
| 131 |
+
show_share_button=False, show_fullscreen_button=False, container=False, elem_classes=["image_center"])
|
| 132 |
+
input_text_3 = gr.Textbox(show_label=False, lines=2, placeholder="Please type assistant response",
|
| 133 |
+
container=False, scale=12)
|
| 134 |
+
generate_btn_3 = gr.Button("Send", variant="primary", min_width=80)
|
| 135 |
with gr.Row():
|
| 136 |
+
retry_btn_3 = gr.Button("🔄 Regenerate", variant="secondary", size="sm")
|
| 137 |
+
undo_btn_3 = gr.Button("↩️ Undo", variant="secondary", size="sm")
|
| 138 |
+
# clear_btn_3 = gr.Button("🗑️ Clear", variant="secondary", size="sm")
|
| 139 |
+
clear_btn_3 = gr.Button("🧹 Clear History", variant="secondary", size="sm") # 🧹 Clear History (清除历史)
|
| 140 |
+
gr.Markdown(user_simulator_post_doc)
|
| 141 |
|
| 142 |
with gr.Column(variant="compact", scale=1, min_width=300):
|
| 143 |
# with gr.Column():
|
| 144 |
model = gr.Dropdown(
|
| 145 |
+
["Qwen2-0.5B-Instruct", "llama3.1", "gemini", "MiniCPM3-4B"],
|
| 146 |
value="Qwen2-0.5B-Instruct",
|
| 147 |
label="Model",
|
| 148 |
interactive=True,
|
|
|
|
| 170 |
)
|
| 171 |
|
| 172 |
# TODO: gr.State 不能通过API传参。
|
| 173 |
+
gr_false = gr.State(False)
|
| 174 |
history = gr.State([{"role": "system", "content": system_list[0]}]) # 有用信息只有个system,其他和chatbot内容重叠
|
| 175 |
system.change(reset_state, inputs=[system], outputs=[chatbot, history])
|
| 176 |
|
|
|
|
| 194 |
undo_btn_2.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
|
| 195 |
clear_btn_2.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
|
| 196 |
.then(reset_user_input, outputs=[input_text_2], show_api=False)
|
| 197 |
+
tab_assistant_agent.select(generate_assistant_message, [chatbot, history, gr_false], outputs=[chatbot, history],
|
| 198 |
+
show_progress="full", show_api=False) # 点击tab,生成response (不warning)
|
| 199 |
|
| 200 |
######## tab3: user-simulator
|
| 201 |
generate_btn_3.click(append_assistant_to_history, [input_text_3, chatbot, history], outputs=[chatbot, history],
|
|
|
|
| 209 |
clear_btn_3.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
|
| 210 |
.then(reset_user_input, outputs=[input_text_3], show_api=False)
|
| 211 |
|
| 212 |
+
tab_user_agent.select(generate_user_message, [chatbot, history, gr_false], outputs=[chatbot, history],
|
| 213 |
+
show_progress="full", show_api=False) # 点击tab,生成user-input
|
| 214 |
+
|
| 215 |
slider_max_new_tokens.change(set_max_new_tokens, inputs=[slider_max_new_tokens])
|
| 216 |
slider_temperature.change(set_temperature, inputs=[slider_temperature])
|
| 217 |
slider_top_p.change(set_top_p, inputs=[slider_top_p])
|
app_util.py
CHANGED
|
@@ -4,7 +4,7 @@ from typing import List, Dict
|
|
| 4 |
from utils.logging_util import logger
|
| 5 |
from models.cpp_qwen2 import Qwen2Simulator as Bot
|
| 6 |
# from models.hf_qwen2 import Qwen2Simulator as Bot
|
| 7 |
-
|
| 8 |
|
| 9 |
#
|
| 10 |
# def postprocess(self, y):
|
|
@@ -31,12 +31,13 @@ system_list = [
|
|
| 31 |
"你是一名作家,擅长写小说。"
|
| 32 |
]
|
| 33 |
|
| 34 |
-
|
| 35 |
bot = Bot(system_list)
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
if history and history[-1]["role"] == "user":
|
| 39 |
-
|
|
|
|
| 40 |
yield chatbot, history
|
| 41 |
else:
|
| 42 |
chatbot.append(None)
|
|
@@ -49,14 +50,15 @@ def generate_user_message(chatbot, history):
|
|
| 49 |
yield chatbot, history
|
| 50 |
|
| 51 |
|
| 52 |
-
def generate_assistant_message(chatbot, history):
|
| 53 |
"""
|
| 54 |
auto-mode:query is None
|
| 55 |
manual-mode:query 是用户输入
|
| 56 |
"""
|
| 57 |
user_content = history[-1]["content"]
|
| 58 |
if history[-1]["role"] != "user":
|
| 59 |
-
|
|
|
|
| 60 |
yield chatbot, history
|
| 61 |
else:
|
| 62 |
streamer = bot.generate(history, stream=True)
|
|
@@ -116,7 +118,6 @@ def append_assistant_to_history(input_content, chatbot, history):
|
|
| 116 |
return chatbot, history
|
| 117 |
|
| 118 |
|
| 119 |
-
|
| 120 |
def undo_generate(chatbot, history):
|
| 121 |
if history[-1]["role"] == "user":
|
| 122 |
history = history[:-1]
|
|
@@ -141,12 +142,14 @@ def reset_state(system):
|
|
| 141 |
def set_max_new_tokens(max_new_tokens):
|
| 142 |
bot.generation_kwargs["max_tokens"] = max_new_tokens
|
| 143 |
|
|
|
|
| 144 |
def set_temperature(temperature):
|
| 145 |
bot.generation_kwargs["temperature"] = temperature
|
|
|
|
|
|
|
| 146 |
def set_top_p(top_p):
|
| 147 |
bot.generation_kwargs["top_p"] = top_p
|
| 148 |
|
|
|
|
| 149 |
def set_top_k(top_k):
|
| 150 |
bot.generation_kwargs["top_k"] = top_k
|
| 151 |
-
|
| 152 |
-
|
|
|
|
| 4 |
from utils.logging_util import logger
|
| 5 |
from models.cpp_qwen2 import Qwen2Simulator as Bot
|
| 6 |
# from models.hf_qwen2 import Qwen2Simulator as Bot
|
| 7 |
+
# from models.mock import MockSimulator as Bot
|
| 8 |
|
| 9 |
#
|
| 10 |
# def postprocess(self, y):
|
|
|
|
| 31 |
"你是一名作家,擅长写小说。"
|
| 32 |
]
|
| 33 |
|
|
|
|
| 34 |
bot = Bot(system_list)
|
| 35 |
|
| 36 |
+
|
| 37 |
+
def generate_user_message(chatbot, history, show_warning=True):
|
| 38 |
if history and history[-1]["role"] == "user":
|
| 39 |
+
if show_warning:
|
| 40 |
+
gr.Warning('You should generate assistant-response.')
|
| 41 |
yield chatbot, history
|
| 42 |
else:
|
| 43 |
chatbot.append(None)
|
|
|
|
| 50 |
yield chatbot, history
|
| 51 |
|
| 52 |
|
| 53 |
+
def generate_assistant_message(chatbot, history, show_warning=True):
|
| 54 |
"""
|
| 55 |
auto-mode:query is None
|
| 56 |
manual-mode:query 是用户输入
|
| 57 |
"""
|
| 58 |
user_content = history[-1]["content"]
|
| 59 |
if history[-1]["role"] != "user":
|
| 60 |
+
if show_warning:
|
| 61 |
+
gr.Warning('You should generate or type user-input first.')
|
| 62 |
yield chatbot, history
|
| 63 |
else:
|
| 64 |
streamer = bot.generate(history, stream=True)
|
|
|
|
| 118 |
return chatbot, history
|
| 119 |
|
| 120 |
|
|
|
|
| 121 |
def undo_generate(chatbot, history):
|
| 122 |
if history[-1]["role"] == "user":
|
| 123 |
history = history[:-1]
|
|
|
|
| 142 |
def set_max_new_tokens(max_new_tokens):
|
| 143 |
bot.generation_kwargs["max_tokens"] = max_new_tokens
|
| 144 |
|
| 145 |
+
|
| 146 |
def set_temperature(temperature):
|
| 147 |
bot.generation_kwargs["temperature"] = temperature
|
| 148 |
+
|
| 149 |
+
|
| 150 |
def set_top_p(top_p):
|
| 151 |
bot.generation_kwargs["top_p"] = top_p
|
| 152 |
|
| 153 |
+
|
| 154 |
def set_top_k(top_k):
|
| 155 |
bot.generation_kwargs["top_k"] = top_k
|
|
|
|
|
|
assets//345/245/263/345/256/242/346/234/215.png
ADDED
|
models/mock.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
|
| 4 |
+
from models.base_model import Simulator
|
| 5 |
+
|
| 6 |
+
class MockSimulator(Simulator):
|
| 7 |
+
|
| 8 |
+
def __init__(self, *args, **kwargs):
|
| 9 |
+
pass
|
| 10 |
+
|
| 11 |
+
def strip_stoptokens(self, tokens):
|
| 12 |
+
return tokens
|
| 13 |
+
|
| 14 |
+
def generate(self, history, stream=True):
|
| 15 |
+
for text in ['hello', 'world']:
|
| 16 |
+
yield text, [11]
|
| 17 |
+
|