File size: 29,196 Bytes
3da296e 13b7d2e 3da296e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
if 'env' not in st.session_state:
st.session_state.env = None
if 'config' not in st.session_state:
st.session_state.config = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'total_reward' not in st.session_state:
st.session_state.total_reward = 0.0
# ===================================================
# 环境类 V7 (保持不变,只是使用新的 config)
# ===================================================
class DynamicEnergyGridEnvV7:
"""Dynamic Energy Grid Environment v7"""
def __init__(self, config):
self.cfg = config
self.horizon = config["horizon"]
self.world = config["world"]
self.demand_series = config["demand"]
self.budget_series = config["budget"]
self.capacity = config["capacity"]
self.initial_rated_cfg = config["initial_rated"]
self.initial_stability = config["initial_stability"]
self.prices = config["prices"]
self.penalty = config["penalty"]
self.reset()
def reset(self):
self.t = 0
self.thermal_rated = self.initial_rated_cfg["thermal"]
self.wind_rated = self.initial_rated_cfg["wind"]
self.solar_rated = self.initial_rated_cfg["solar"]
self.battery_rated = self.initial_rated_cfg["battery"]
self.prev_rated = dict(self.initial_rated_cfg)
self.stability = self.initial_stability
self.thermal_actual = 0
self.wind_actual = 0
self.solar_actual = 0
self.battery_actual = 0
self.cum_unmet = 0
self.cum_carbon = 0
self.cum_budget_violation = 0
self.cum_ramp = 0
self.done = False
return self._get_obs()
def step(self, action):
if self.done:
raise RuntimeError("Episode finished. Call reset() first.")
t = self.t
# 1. clamp 到容量
self.thermal_rated = self._clamp(action.get("thermal", 0.0), 0, self.capacity["thermal"])
self.wind_rated = self._clamp(action.get("wind", 0.0), 0, self.capacity["wind"])
self.solar_rated = self._clamp(action.get("solar", 0.0), 0, self.capacity["solar"])
self.battery_rated = self._clamp(action.get("battery", 0.0), 0, self.capacity["battery"])
# 2. 效率
eff_th = self.world["eff_thermal"][t]
eff_w = self.world["eff_wind"][t]
eff_s = self.world["eff_solar"][t]
# 3. 实际发电
self.thermal_actual = self.thermal_rated * eff_th
self.wind_actual = self.wind_rated * eff_w
self.solar_actual = self.solar_rated * eff_s
self.battery_actual = self.battery_rated * 1.0
supply = (self.thermal_actual + self.wind_actual +
self.solar_actual + self.battery_actual)
demand = self.demand_series[t]
if demand > 1e-6:
unmet = max(0, 1 - supply / demand)
else:
unmet = 0
self.cum_unmet += unmet
# 4. 预算开销
cost_today = (self.thermal_rated * self.prices["thermal"] +
self.wind_rated * self.prices["wind"] +
self.solar_rated * self.prices["solar"] +
self.battery_rated * self.prices["battery"])
budget_today = self.budget_series[t]
budget_violation = max(0, (cost_today - budget_today) / budget_today)
self.cum_budget_violation += budget_violation
# 5. ramp
ramp = (abs(self.thermal_rated - self.prev_rated["thermal"]) +
abs(self.wind_rated - self.prev_rated["wind"]) +
abs(self.solar_rated - self.prev_rated["solar"]) +
abs(self.battery_rated - self.prev_rated["battery"]))
self.cum_ramp += ramp
self.prev_rated = {
"thermal": self.thermal_rated,
"wind": self.wind_rated,
"solar": self.solar_rated,
"battery": self.battery_rated,
}
# 6. 碳排
if supply > 1e-6:
share_thermal = self.thermal_actual / supply
else:
share_thermal = 0
self.cum_carbon += share_thermal
# 7. 新稳定性(即时)
max_ramp = sum(self.capacity.values())
normalized_ramp = min(1.0, ramp / max_ramp)
a = 0.7
b = 0.3
stability = 1 - a*unmet - b*normalized_ramp
self.stability = self._clamp(stability, 0, 1)
# 8. 时间推进
self.t += 1
done = (self.t >= self.horizon)
self.done = done
# 9. reward(only at final)
if done:
avg_unmet = self.cum_unmet / self.horizon
avg_carbon = self.cum_carbon / self.horizon
avg_budget_vio = self.cum_budget_violation / self.horizon
reward = (-self.penalty["unmet"] * avg_unmet -
self.penalty["carbon"] * avg_carbon -
self.penalty["budget"] * avg_budget_vio -
self.penalty["ramp"] * self.cum_ramp +
self.penalty["stability"] * self.stability)
else:
reward = 0
# 10. obs & info
obs = self._get_obs()
info = {
"cost_today": cost_today,
"budget_today": budget_today,
"cost_vs_budget": cost_today / budget_today if budget_today > 1e-6 else 0,
"budget_violation": budget_violation,
"unmet": unmet,
"share_thermal": share_thermal,
"nl_forecast": obs["nl_forecast"],
"is_terminal_reward": done,
}
return obs, reward, done, info
def _clamp(self, x, lo, hi):
return max(lo, min(hi, x))
def _trend_sentence(self, today, tomorrow, typ):
delta = tomorrow - today
x = abs(delta)
if x < 0.03:
phrase = "remain roughly stable"
elif x < 0.08:
phrase = "slightly increase" if delta > 0 else "slightly decrease"
elif x < 0.15:
phrase = "moderately increase" if delta > 0 else "moderately decrease"
else:
phrase = "sharply increase" if delta > 0 else "sharply decrease"
if typ == "wind":
return f"Tomorrow wind potential is expected to {phrase}."
else:
return f"Tomorrow solar potential is expected to {phrase}."
def _get_obs(self):
t = self.t
h = self.horizon
t_today = max(0, t-1)
t_next = min(h-1, t)
demand_today = self.demand_series[t_today]
demand_next = self.demand_series[t_next]
budget_today = self.budget_series[t_today]
budget_next = self.budget_series[t_next]
w_today = self.world["weather_wind_raw"][t_today]
s_today = self.world["weather_solar_raw"][t_today]
w_next = self.world["weather_wind_raw"][t_next]
s_next = self.world["weather_solar_raw"][t_next]
nl_forecast = (self._trend_sentence(w_today, w_next, "wind") + " " +
self._trend_sentence(s_today, s_next, "solar"))
supply = (self.thermal_actual + self.wind_actual +
self.solar_actual + self.battery_actual)
obs = {
"day": t,
"demand_today": demand_today,
"demand_next": demand_next,
"budget_today": budget_today,
"budget_next": budget_next,
"rated": {
"thermal": self.thermal_rated,
"wind": self.wind_rated,
"solar": self.solar_rated,
"battery": self.battery_rated,
},
"actual": {
"thermal": self.thermal_actual,
"wind": self.wind_actual,
"solar": self.solar_actual,
"battery": self.battery_actual,
"supply": supply,
"demand_met": self._clamp(supply / max(1e-6, demand_today), 0, 1)
},
"efficiency": {
"thermal": self.world["eff_thermal"][t_today],
"wind": self.world["eff_wind"][t_today],
"solar": self.world["eff_solar"][t_today],
},
"stability": self.stability,
"nl_forecast": nl_forecast,
}
return obs
# ===================================================
# 配置生成 V11
# ===================================================
def generate_world_profile_v11(days=120, seed=0):
rng = np.random.default_rng(seed)
# Season phase & amplitude
phase_wind = rng.uniform(0, 2 * math.pi)
delta_phase_solar = rng.uniform(-0.3 * math.pi, 0.3 * math.pi)
phase_solar = phase_wind + math.pi + delta_phase_solar
amp_wind = rng.uniform(0.15, 0.35)
amp_solar = rng.uniform(0.15, 0.35)
center_wind = 0.75
center_solar = 0.75
# thermal weak season
amp_thermal = 0.03
center_thermal = 0.95
# storage
season_wind = np.zeros(days)
season_solar = np.zeros(days)
season_thermal = np.zeros(days)
weather_wind_raw = np.zeros(days)
weather_solar_raw = np.zeros(days)
weather_thermal_raw = np.zeros(days)
eff_wind = np.zeros(days)
eff_solar = np.zeros(days)
eff_thermal = np.zeros(days)
# Extreme Events
n_storm_events = 3
n_cloudy_events = 3
all_days = np.arange(days)
storm_starts = rng.choice(all_days, size=n_storm_events, replace=False)
cloudy_starts = rng.choice(all_days, size=n_cloudy_events, replace=False)
storm_days, cloudy_days = set(), set()
for d in storm_starts:
for k in range(rng.integers(2, 4)):
if 0 <= d + k < days:
storm_days.add(d + k)
for d in cloudy_starts:
for k in range(rng.integers(2, 4)):
if 0 <= d + k < days:
cloudy_days.add(d + k)
# AR(1) Weather Noise
trend = 0.0
trend_decay = 0.85
noise_scale = 0.12
thermal_noise_scale = 0.02
for t in range(days):
# season wave (30-day cycle)
season_wind[t] = center_wind + amp_wind * math.sin(2 * math.pi * (t % 30) / 30 + phase_wind)
season_solar[t] = center_solar + amp_solar * math.sin(2 * math.pi * (t % 30) / 30 + phase_solar)
season_thermal[t] = center_thermal + amp_thermal * math.sin(2 * math.pi * (t % 30) / 30)
# AR(1)
noise = rng.normal(0, noise_scale)
trend = trend_decay * trend + (1 - trend_decay) * noise
weather_factor = 1.0 + trend
weather_wind_raw[t] = weather_factor
weather_solar_raw[t] = weather_factor
weather_thermal_raw[t] = 1.0 + rng.normal(0, thermal_noise_scale)
# Efficiency
ew = season_wind[t] * weather_factor * (1 + rng.normal(0, 0.03))
es = season_solar[t] * weather_factor * (1 + rng.normal(0, 0.03))
et = season_thermal[t] * weather_thermal_raw[t]
# Extreme events
if t in storm_days:
ew *= 1.15
es *= 0.60
if t in cloudy_days:
ew *= 1.05
es *= 0.50
eff_wind[t] = np.clip(ew, 0.1, 1.2)
eff_solar[t] = np.clip(es, 0.1, 1.2)
eff_thermal[t] = np.clip(et, 0.85, 1.05)
return {
"days": days,
"eff_wind": eff_wind.tolist(),
"eff_solar": eff_solar.tolist(),
"eff_thermal": eff_thermal.tolist(),
"season_wind": season_wind.tolist(),
"season_solar": season_solar.tolist(),
"season_thermal": season_thermal.tolist(),
"weather_wind_raw": weather_wind_raw.tolist(),
"weather_solar_raw": weather_solar_raw.tolist(),
"weather_thermal_raw": weather_thermal_raw.tolist(),
"storm_days": sorted(list(storm_days)),
"cloudy_days": sorted(list(cloudy_days)),
"phase_wind": phase_wind,
"phase_solar": phase_solar,
"amp_wind": amp_wind,
"amp_solar": amp_solar,
"seed": seed,
}
def generate_demand_v11(days=120, seed=0):
rng = np.random.default_rng(seed)
base = rng.uniform(320, 480)
amp = rng.uniform(0.25, 0.35)
noise = 0.04
phase_demand = rng.uniform(0, 2 * math.pi)
demand = np.zeros(days)
for t in range(days):
season = math.sin(2 * math.pi * (t % 30) / 30 + phase_demand)
demand[t] = base * (1 + amp * season) * (1 + rng.normal(0, noise))
return demand.tolist()
def generate_budget_v11(demand, multiplier=4.2):
return [multiplier * d for d in demand]
def generate_initial_rated_v11(capacity, demand_day1, rng):
"""
1) 随机比例 → 保留 diversity
2) normalize → 与 day1 demand 匹配(±5%)
3) clip → 不超过 capacity
"""
# Step 1: random raw proportions
p_th = rng.uniform(0.55, 0.75)
p_w = rng.uniform(0.20, 0.40)
p_s = rng.uniform(0.15, 0.35)
p_b = rng.uniform(0.10, 0.30)
raw = np.array([p_th, p_w, p_s, p_b])
raw = raw / raw.sum()
# Step 2: target total generation
target_total = demand_day1 * rng.uniform(0.95, 1.05)
# Step 3: scale and clip
thermal_r0 = min(raw[0] * target_total, capacity["thermal"])
wind_r0 = min(raw[1] * target_total, capacity["wind"])
solar_r0 = min(raw[2] * target_total, capacity["solar"])
battery_r0 = min(raw[3] * target_total, capacity["battery"])
return {
"thermal": thermal_r0,
"wind": wind_r0,
"solar": solar_r0,
"battery": battery_r0,
}
def generate_energy_grid_config_v11(days=120, seed=0):
rng = np.random.default_rng(seed)
world = generate_world_profile_v11(days, seed)
demand = generate_demand_v11(days, seed)
budget = generate_budget_v11(demand, multiplier=4.2)
capacity = {
"thermal": 600.0,
"wind": 350.0,
"solar": 250.0,
"battery": 120.0,
}
initial_rated = generate_initial_rated_v11(capacity, demand_day1=demand[0], rng=rng)
prices = {
"thermal": 3.0,
"wind": 5.0,
"solar": 6.0,
"battery": 8.0,
}
penalty = {
"unmet": 3.0,
"carbon": 1.0,
"budget": 2.0,
"ramp": 0.0005,
"stability": 1.0,
}
config = {
"horizon": days,
"world": world,
"demand": demand,
"budget": budget,
"capacity": capacity,
"initial_rated": initial_rated,
"initial_stability": 1.0,
"prices": prices,
"penalty": penalty,
"seed": seed,
}
return config
# ===================================================
# Session State 初始化
# ===================================================
if 'env' not in st.session_state:
st.session_state.env = None
if 'config' not in st.session_state:
st.session_state.config = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'total_reward' not in st.session_state:
st.session_state.total_reward = 0.0
def initialize_env(days, seed):
"""初始化环境"""
config = generate_energy_grid_config_v11(days=days, seed=seed)
env = DynamicEnergyGridEnvV7(config)
st.session_state.env = env
st.session_state.config = config
st.session_state.history = []
st.session_state.total_reward = 0.0
def step_simulation(thermal, wind, solar, battery):
"""执行一步仿真"""
env = st.session_state.env
if env is None:
st.error("❌ Please initialize environment first!")
return
if env.done:
st.warning("⚠️ Simulation finished! Please reset to start again.")
return
action = {
"thermal": thermal,
"wind": wind,
"solar": solar,
"battery": battery,
}
obs, reward, done, info = env.step(action)
# 记录历史
st.session_state.history.append({
"day": obs["day"] - 1,
"demand": obs["demand_today"],
"supply": obs["actual"]["supply"],
"stability": obs["stability"],
"carbon": info["share_thermal"],
"cost": info["cost_today"],
"budget": info["budget_today"],
"thermal": obs["actual"]["thermal"],
"wind": obs["actual"]["wind"],
"solar": obs["actual"]["solar"],
"battery": obs["actual"]["battery"],
"demand_met": obs["actual"]["demand_met"],
"budget_violation": info["budget_violation"],
"cost_vs_budget": info["cost_vs_budget"],
})
if done:
st.session_state.total_reward = reward
st.success(f"🎉 Simulation Complete! Final Reward: {reward:.2f}")
# ===================================================
# UI 界面
# ===================================================
st.title("⚡ Dynamic Energy Grid Simulator V11")
st.markdown("""
Manage a multi-source power grid by adjusting rated power for thermal, wind, solar, and battery generation.
**V11 Features:** 30-day seasonal cycles with diversity, normalized initial ratings, and improved weather patterns.
""")
# 侧边栏 - 控制面板
with st.sidebar:
st.header("🎛️ Environment Setup")
days_input = st.slider("Simulation Days", 10, 120, 30)
seed_input = st.number_input("Random Seed", value=42, step=1)
if st.button("🔄 Initialize Environment", type="primary", use_container_width=True):
initialize_env(days_input, seed_input)
st.success("✅ Environment initialized!")
st.rerun()
st.divider()
st.header("⚙️ Power Control (Rated MW)")
if st.session_state.env is not None:
obs = st.session_state.env._get_obs()
thermal_slider = st.slider(
"🔥 Thermal Power",
0.0, 600.0,
float(obs["rated"]["thermal"]),
10.0
)
wind_slider = st.slider(
"💨 Wind Power",
0.0, 350.0,
float(obs["rated"]["wind"]),
10.0
)
solar_slider = st.slider(
"☀️ Solar Power",
0.0, 250.0,
float(obs["rated"]["solar"]),
10.0
)
battery_slider = st.slider(
"🔋 Battery Power",
0.0, 120.0,
float(obs["rated"]["battery"]),
5.0
)
# ==========================
# 新增:实时预测面板 (Power & Cost)
# ==========================
st.divider()
st.subheader("🔮 Real-time Projections")
# --- 1. 数据准备 ---
prices = st.session_state.config["prices"]
eff = obs["efficiency"] # 获取今日效率
demand_today = obs["demand_today"]
budget_today = obs["budget_today"]
# --- 2. 核心计算 ---
# A. 预计实际发电量 (考虑天气效率!)
# 注意:电池效率在 Env 代码中固定为 1.0
est_supply = (
thermal_slider * eff["thermal"] +
wind_slider * eff["wind"] +
solar_slider * eff["solar"] +
battery_slider * 1.0
)
# B. 预计开销
est_cost = (
thermal_slider * prices["thermal"] +
wind_slider * prices["wind"] +
solar_slider * prices["solar"] +
battery_slider * prices["battery"]
)
# --- 3. 显示 Power 指标 (电量) ---
# 使用 Delta 展示供需差额:绿色表示满足需求,红色表示短缺
p_col1, p_col2 = st.columns(2)
p_col1.metric(
"Est. Supply",
f"{est_supply:.1f} MW",
delta=f"{est_supply - demand_today:.1f} MW",
help="Sum of (Rated × Efficiency). This is what actually hits the grid."
)
p_col2.metric(
"Target Demand",
f"{demand_today:.1f} MW",
delta=None
)
# 电量状态提示
if est_supply < demand_today:
st.error(f"⚠️ Shortage: {demand_today - est_supply:.1f} MW")
else:
# 计算溢出比例,稍微溢出是安全的,溢出太多浪费
surplus = est_supply - demand_today
if surplus > demand_today * 0.2:
st.info(f"⚠️ High Surplus: +{surplus:.1f} MW (Waste?)")
else:
st.success("✅ Demand Met")
# --- 4. 显示 Cost 指标 (资金) ---
st.write("") # 空一行间隔
c_col1, c_col2 = st.columns(2)
c_col1.metric("Est. Cost", f"${est_cost:.1f}k")
c_col2.metric("Budget", f"${budget_today:.1f}k")
# 资金状态提示
if est_cost > budget_today:
st.warning(f"💸 Over Budget: ${est_cost - budget_today:.1f}k")
else:
st.caption(f"💰 Remaining: ${budget_today - est_cost:.1f}k")
if st.button("▶️ Execute Step", type="primary", use_container_width=True):
step_simulation(thermal_slider, wind_slider, solar_slider, battery_slider)
st.rerun()
else:
st.info("Please initialize the environment first")
# 主面板
if st.session_state.env is not None:
obs = st.session_state.env._get_obs()
# 顶部指标卡片
col1, col2, col3, col4 = st.columns(4)
with col1:
demand_met_pct = obs['actual']['demand_met'] * 100
color = "🟢" if demand_met_pct >= 95 else "🟡" if demand_met_pct >= 85 else "🔴"
st.metric(
"Demand Met",
f"{demand_met_pct:.1f}%",
delta=None,
help="Percentage of demand satisfied"
)
st.markdown(f"{color}")
with col2:
stability_pct = obs['stability'] * 100
color = "🟢" if stability_pct >= 70 else "🟡" if stability_pct >= 40 else "🔴"
st.metric(
"Grid Stability",
f"{stability_pct:.1f}%",
delta=None,
help="Overall grid stability score"
)
st.markdown(f"{color}")
with col3:
if len(st.session_state.history) > 0:
carbon_pct = st.session_state.history[-1]["carbon"] * 100
else:
carbon_pct = 0
color = "🟢" if carbon_pct < 40 else "🟡" if carbon_pct < 70 else "🔴"
st.metric(
"Carbon Intensity",
f"{carbon_pct:.1f}%",
delta=None,
help="Percentage of thermal power in total supply"
)
st.markdown(f"{color}")
with col4:
st.metric(
"Day",
f"{obs['day']} / {st.session_state.config['horizon']}",
delta=None
)
if st.session_state.total_reward != 0:
st.metric("Total Reward", f"{st.session_state.total_reward:.2f}")
st.divider()
# 详细信息
col1, col2 = st.columns(2)
with col1:
st.subheader("📊 Current Status")
st.markdown(f"""
**Power Generation (MW):**
- 🔥 Thermal: {obs['actual']['thermal']:.1f} MW
- 💨 Wind: {obs['actual']['wind']:.1f} MW
- ☀️ Solar: {obs['actual']['solar']:.1f} MW
- 🔋 Battery: {obs['actual']['battery']:.1f} MW
- **Total Supply: {obs['actual']['supply']:.1f} MW**
""")
st.markdown(f"""
**Demand & Budget:**
- Current Demand: {obs['demand_today']:.1f} MW
- Next Demand: {obs['demand_next']:.1f} MW
- Budget Today: ${obs['budget_today']:.1f}K
- Budget Next: ${obs['budget_next']:.1f}K
""")
# NL Forecast
st.info(f"🔮 **Weather Forecast:**\n{obs['nl_forecast']}")
with col2:
st.subheader("⚡ Efficiency (Today)")
eff_data = pd.DataFrame({
'Source': ['Thermal', 'Wind', 'Solar'],
'Efficiency': [
obs['efficiency']['thermal'],
obs['efficiency']['wind'],
obs['efficiency']['solar']
]
})
st.dataframe(eff_data, use_container_width=True, hide_index=True)
# 进度条显示效率(归一化到0-1范围,效率最大值为1.2)
max_eff = 1.2
st.progress(
min(1.0, obs['efficiency']['thermal'] / max_eff),
text=f"Thermal: {obs['efficiency']['thermal']:.2f}"
)
st.progress(
min(1.0, obs['efficiency']['wind'] / max_eff),
text=f"Wind: {obs['efficiency']['wind']:.2f}"
)
st.progress(
min(1.0, obs['efficiency']['solar'] / max_eff),
text=f"Solar: {obs['efficiency']['solar']:.2f}"
)
# 历史数据图表
if len(st.session_state.history) > 0:
st.divider()
st.subheader("📈 Historical Data")
tab1, tab2, tab3, tab4 = st.tabs(["Power Generation", "Performance Metrics", "Budget Analysis", "Data Table"])
with tab1:
history = st.session_state.history
fig, ax = plt.subplots(figsize=(12, 6))
days = [h["day"] for h in history]
ax.plot(days, [h["thermal"] for h in history], 'r-', label='Thermal', linewidth=2)
ax.plot(days, [h["wind"] for h in history], 'b-', label='Wind', linewidth=2)
ax.plot(days, [h["solar"] for h in history], 'y-', label='Solar', linewidth=2)
ax.plot(days, [h["battery"] for h in history], 'g-', label='Battery', linewidth=2)
ax.plot(days, [h["demand"] for h in history], 'k--', label='Demand', linewidth=2, alpha=0.7)
ax.set_xlabel('Day', fontsize=12)
ax.set_ylabel('Power (MW)', fontsize=12)
ax.set_title('Power Generation Over Time', fontsize=14, fontweight='bold')
ax.legend(loc='best')
ax.grid(True, alpha=0.3)
plt.tight_layout()
st.pyplot(fig)
with tab2:
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 10))
days = [h["day"] for h in history]
# 稳定性
stability = [h["stability"] * 100 for h in history]
ax1.plot(days, stability, 'g-', linewidth=2)
ax1.axhline(y=70, color='orange', linestyle='--', alpha=0.5, label='Warning (70%)')
ax1.axhline(y=40, color='r', linestyle='--', alpha=0.5, label='Critical (40%)')
ax1.set_ylabel('Stability (%)', fontsize=12)
ax1.set_title('Grid Stability', fontsize=13, fontweight='bold')
ax1.legend()
ax1.grid(True, alpha=0.3)
# 碳强度
carbon = [h["carbon"] * 100 for h in history]
ax2.plot(days, carbon, 'brown', linewidth=2)
ax2.axhline(y=70, color='orange', linestyle='--', alpha=0.5, label='High (70%)')
ax2.axhline(y=40, color='g', linestyle='--', alpha=0.5, label='Low (40%)')
ax2.set_ylabel('Carbon Intensity (%)', fontsize=12)
ax2.set_title('Carbon Intensity', fontsize=13, fontweight='bold')
ax2.legend()
ax2.grid(True, alpha=0.3)
# 需求满足度
demand_met = [h["demand_met"] * 100 for h in history]
ax3.plot(days, demand_met, 'purple', linewidth=2)
ax3.axhline(y=95, color='g', linestyle='--', alpha=0.5, label='Target (95%)')
ax3.axhline(y=85, color='orange', linestyle='--', alpha=0.5, label='Warning (85%)')
ax3.set_xlabel('Day', fontsize=12)
ax3.set_ylabel('Demand Met (%)', fontsize=12)
ax3.set_title('Demand Satisfaction', fontsize=13, fontweight='bold')
ax3.legend()
ax3.grid(True, alpha=0.3)
plt.tight_layout()
st.pyplot(fig)
with tab3:
df = pd.DataFrame(st.session_state.history)
st.dataframe(df, use_container_width=True, hide_index=True)
# 下载按钮
csv = df.to_csv(index=False)
st.download_button(
label="📥 Download Data as CSV",
data=csv,
file_name="energy_grid_simulation.csv",
mime="text/csv"
)
else:
st.info("👈 Please initialize the environment from the sidebar to begin")
st.markdown("""
### 📖 Instructions
1. **Initialize**: Set simulation days and seed in the sidebar, then click "Initialize Environment"
2. **Adjust Power**: Use sliders to set rated power for each generation type
3. **Execute Step**: Click to advance one day and see results
4. **Monitor**: Watch the charts to track performance over time
**Goals**:
- Maximize demand satisfaction (>95%)
- Maintain grid stability (>70%)
- Minimize carbon emissions (<40%)
- Stay within budget
""") |