Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, CLIPProcessor, SiglipModel, AutoProcessor
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from modeling_nllb_clip import NLLBCLIPModel
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from sentence_transformers import SentenceTransformer, util
|
| 7 |
+
from PIL import Image, ImageFile
|
| 8 |
+
import requests
|
| 9 |
+
import torch
|
| 10 |
+
import numpy as np
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
## NLLB Inference
|
| 14 |
+
nllb_clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 15 |
+
nllb_clip_processor = nllb_clip_processor.image_processor
|
| 16 |
+
nllb_clip_tokenizer = AutoTokenizer.from_pretrained(
|
| 17 |
+
"facebook/nllb-200-distilled-600M"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def nllb_clip_inference(image,labels):
|
| 21 |
+
labels = labels.split(",")
|
| 22 |
+
image_inputs = nllb_clip_processor(images=image, return_tensors="pt")
|
| 23 |
+
text_inputs = nllb_clip_tokenizer(labels, padding="longest", return_tensors="pt",)
|
| 24 |
+
nllb_clip_model = NLLBCLIPModel.from_pretrained("visheratin/nllb-clip-base")
|
| 25 |
+
|
| 26 |
+
outputs = nllb_clip_model(input_ids = text_inputs.input_ids, attention_mask = text_inputs.attention_mask, pixel_values=image_inputs.pixel_values)
|
| 27 |
+
normalized_tensor = F.softmax(outputs["logits_per_text"], dim=0)
|
| 28 |
+
normalized_tensor = normalized_tensor.detach().numpy()
|
| 29 |
+
return {labels[i]: float(np.array(normalized_tensor)[i]) for i in range(len(labels))}
|
| 30 |
+
|
| 31 |
+
# SentenceTransformers CLIP-ViT-B-32
|
| 32 |
+
img_model = SentenceTransformer('clip-ViT-B-32')
|
| 33 |
+
text_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1')
|
| 34 |
+
|
| 35 |
+
def infer_st(image, texts):
|
| 36 |
+
texts = texts.split(",")
|
| 37 |
+
img_embeddings = img_model.encode(image)
|
| 38 |
+
text_embeddings = text_model.encode(texts)
|
| 39 |
+
cos_sim = util.cos_sim(text_embeddings, img_embeddings)
|
| 40 |
+
return {texts[i]: float(np.array(cos_sim)[i]) for i in range(len(texts))}
|
| 41 |
+
|
| 42 |
+
### SigLIP Inference
|
| 43 |
+
|
| 44 |
+
siglip_model = SiglipModel.from_pretrained("google/siglip-base-patch16-256-multilingual")
|
| 45 |
+
siglip_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-256-multilingual")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def postprocess_siglip(output, labels):
|
| 49 |
+
return {labels[i]: float(np.array(output[0])[i]) for i in range(len(labels))}
|
| 50 |
+
|
| 51 |
+
def siglip_detector(image, texts):
|
| 52 |
+
inputs = siglip_processor(text=texts, images=image, return_tensors="pt",
|
| 53 |
+
padding="max_length")
|
| 54 |
+
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
outputs = siglip_model(**inputs)
|
| 57 |
+
logits_per_image = outputs.logits_per_image
|
| 58 |
+
probs = torch.sigmoid(logits_per_image)
|
| 59 |
+
|
| 60 |
+
return probs
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def infer_siglip(image, candidate_labels):
|
| 64 |
+
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
|
| 65 |
+
siglip_out = siglip_detector(image, candidate_labels)
|
| 66 |
+
return postprocess_siglip(siglip_out, labels=candidate_labels)
|
| 67 |
+
|
| 68 |
+
def infer(image, labels):
|
| 69 |
+
st_out = infer_st(image, labels)
|
| 70 |
+
nllb_out = nllb_clip_inference(image, labels)
|
| 71 |
+
siglip_out = infer_siglip(image, labels)
|
| 72 |
+
return st_out, siglip_out, nllb_out
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
with gr.Blocks() as demo:
|
| 76 |
+
gr.Markdown("# Compare Multilingual Zero-shot Image Classification")
|
| 77 |
+
gr.Markdown("Compare the performance of SigLIP and othe rmodels on zero-shot classification in this Space 👇")
|
| 78 |
+
with gr.Row():
|
| 79 |
+
with gr.Column():
|
| 80 |
+
image_input = gr.Image(type="pil")
|
| 81 |
+
text_input = gr.Textbox(label="Input a list of labels")
|
| 82 |
+
run_button = gr.Button("Run", visible=True)
|
| 83 |
+
|
| 84 |
+
with gr.Column():
|
| 85 |
+
st_output = gr.Label(label = "CLIP-ViT Multilingual Output", num_top_classes=3)
|
| 86 |
+
siglip_output = gr.Label(label = "SigLIP Output", num_top_classes=3)
|
| 87 |
+
nllb_output = gr.Label(label = "NLLB-CLIP Output", num_top_classes=3)
|
| 88 |
+
|
| 89 |
+
examples = [["../cat.jpg", "eine Katze, köpek, un oiseau"]]
|
| 90 |
+
gr.Examples(
|
| 91 |
+
examples = examples,
|
| 92 |
+
inputs=[image_input, text_input],
|
| 93 |
+
outputs=[st_output,
|
| 94 |
+
siglip_output,
|
| 95 |
+
nllb_output],
|
| 96 |
+
fn=infer,
|
| 97 |
+
cache_examples=True
|
| 98 |
+
)
|
| 99 |
+
run_button.click(fn=infer,
|
| 100 |
+
inputs=[image_input, text_input],
|
| 101 |
+
outputs=[st_output,
|
| 102 |
+
siglip_output,
|
| 103 |
+
nllb_output])
|
| 104 |
+
|
| 105 |
+
demo.launch()
|