Spaces:
Sleeping
Sleeping
| import torch | |
| from PIL import Image | |
| from transformers import AutoModel, CLIPImageProcessor | |
| import gradio as gr | |
| # Load the model | |
| model = AutoModel.from_pretrained( | |
| 'OpenGVLab/InternVL2_5-1B', | |
| torch_dtype=torch.float32, # Use float32 for CPU compatibility | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| use_flash_attn=False # Disable Flash Attention | |
| ).eval() # Do not move to CUDA, force CPU execution | |
| # Load the image processor | |
| image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B') | |
| # Define the function to process the image and generate outputs | |
| def process_image(image): | |
| try: | |
| # Convert uploaded image to RGB | |
| image = image.convert('RGB') | |
| # Preprocess the image | |
| pixel_values = image_processor(images=image, return_tensors='pt').pixel_values | |
| # Run the model on CPU | |
| outputs = model(pixel_values) | |
| # Assuming the model returns embeddings or features | |
| return f"Output Shape: {outputs.last_hidden_state.shape}" | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Create the Gradio interface | |
| demo = gr.Interface( | |
| fn=process_image, # Function to process the input | |
| inputs=gr.Image(type="pil"), # Accepts images as input | |
| outputs=gr.Textbox(label="Model Output"), # Displays model output | |
| title="InternViT Demo", | |
| description="Upload an image to process it using the InternViT model from OpenGVLab." | |
| ) | |
| # Launch the demo | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |