wulewule / agent /wulewule_agent.py
xzyun2011's picture
changed openai env
c12d400
raw
history blame
11.4 kB
from pathlib import Path
import os
import requests
from typing import List, Dict, Any, Optional, Iterator
from PIL import Image
import re
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
# from llama_index.core.postprocessor import LLMRerank
from llama_index.core.tools import FunctionTool, QueryEngineTool, ToolMetadata
from llama_index.core.agent import ReActAgent
from openai import OpenAI
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import streamlit as st
class PromptEngineerAgent:
"""专门用于优化提示词的代理"""
def __init__(self, llm):
self.llm = llm
def optimize_image_prompt(self, user_input: str) -> str:
"""
将用户的图像需求转换为优化的stable-diffusion提示词
"""
prompt_template = f"""
请将以下用户的图像需求转换为stable-diffusion所需的文生图提示词。
用户需求: {user_input}
请生成一个优化的英文提示词,格式要求:
1. 使用详细的描述性语言
2. 包含具体的艺术风格
3. 说明构图和视角
4. 描述光影和氛围
5. 添加相关的艺术家参考或风格类型
提示词:
"""
response = self.llm.complete(prompt_template)
return str(response)
def optimize_voice_prompt(self, user_input: str) -> Dict[str, str]:
"""
优化语音合成的参数
"""
prompt_template = f"""
请分析以下文本,并提供优化的语音合成参数。
文本: {user_input}
请考虑:
1. 最适合的语言
2. 说话的语速
3. 语气特点
4. 情感色彩
以JSON格式返回参数:
"""
response = self.llm.complete(prompt_template)
try:
params = eval(str(response))
return params
except:
return {"lang": "zh", "speed": 1.0}
class MultiModalAssistant:
def __init__(self, data_source_dir, llm, api_key):
"""
初始化助手,设置必要的API密钥和加载文档
"""
# 初始化LLM
self.llm = llm
self.__api_key = api_key
# 初始化Prompt Engineer Agent
self.prompt_engineer = PromptEngineerAgent(self.llm)
# 加载文档并创建索引
documents = SimpleDirectoryReader(data_source_dir, recursive=False, required_exts=[".txt"]).load_data()
self.index = VectorStoreIndex.from_documents(
documents
)
# 创建rag 用于回答知识问题
self.query_engine = self.index.as_query_engine(similarity_top_k=3)
# 创建rag+reranker用于回答知识问题
# self.query_engine = self.index.as_query_engine(similarity_top_k=3,
# node_postprocessors=[
# LLMRerank(
# choice_batch_size=5,
# top_n=2,
# )],
# response_mode="tree_summarize",)
# 设置工具
tools = [
FunctionTool.from_defaults(
fn=self.rag_query,
name="rag_tool",
description="无法直接回答时,查询和《黑神话:悟空》有关知识的工具"
),
FunctionTool.from_defaults(
fn=self.text_to_speech,
name="tts_tool",
description="将文本转换为语音的工具"
),
FunctionTool.from_defaults(
fn=self.generate_image,
name="image_tool",
description="生成图像的工具"
)
]
# 初始化Agent
self.agent = ReActAgent.from_tools(
tools,
llm=self.llm,
verbose=True,
max_function_calls=5,
)
## 画图的url
self.image_url = None
self.audio_save_file = "audio.mp3"
self.audio_text = None
def rag_query(self, query: str) -> str:
"""
使用RAG系统查询知识库
"""
response = self.query_engine.query(query)
return str(response)
def text_to_speech(self, text: str) -> str:
"""
将文本转换为语音
"""
if not self.audio_text is None:
print(f"文本已转为语音: {self.audio_text}")
return
try:
client = OpenAI( api_key = self.__api_key, base_url="https://api.siliconflow.cn/v1")
with client.audio.speech.with_streaming_response.create(
model="fishaudio/fish-speech-1.5", # 目前仅支持 fishaudio 系列模型
voice="fishaudio/fish-speech-1.5:benjamin", # 系统预置音色
# 用户输入信息 "孙悟空身穿金色战甲,手持金箍棒,眼神锐利"
input=f"{text}",
response_format="mp3" # 支持 mp3, wav, pcm, opus 格式
) as response:
response.stream_to_file(self.audio_save_file)
if response.status_code == 200:
self.audio_text = text
print(f"文本已转为语音: {self.audio_save_file}")
return f"文本转语音已完成。"
else:
print("文本转语音失败,状态码:", response.status_code)
except Exception as e:
return f"文本转语音时出错: {str(e)}"
def generate_image(self, prompt: str) -> str:
"""
使用API生成图像
"""
if not self.image_url is None:
print(f"图像已生成: {self.image_url}")
return
try:
# 使用Prompt Engineer优化提示词
optimized_prompt = self.prompt_engineer.optimize_image_prompt(prompt)
print(f"优化后的图像提示词: {optimized_prompt}")
## create an image of superman in a tense, action-packed scene, with explosive energy and bold dynamic composition, in the style of Ross Tran
url = "https://api.siliconflow.cn/v1/images/generations"
payload = {
"model": "stabilityai/stable-diffusion-3-5-large",
"prompt": f"{optimized_prompt}",
"negative_prompt": "<string>",
"image_size": "1024x1024",
"batch_size": 1,
"seed": 4999999999,
"num_inference_steps": 20,
"guidance_scale": 7.5,
"prompt_enhancement": False
}
headers = {
"Authorization": f"Bearer {self.__api_key}",
"Content-Type": "application/json"
}
response = requests.request("POST", url, json=payload, headers=headers)
if response.status_code == 200:
data = response.json()
self.image_url = data['data'][0]['url']
print(f"图像已生成: {self.image_url}")
return f"图像已生成。"
# return f"图像已生成已完成。继续下一个任务"
else:
print("生成图像失败,状态码:", response.status_code)
except Exception as e:
return f"生成图像时出错: {str(e)}"
def chat(self, user_input: str) -> dict:
"""
处理用户输入并返回适当的响应
"""
# 创建提示来帮助agent理解如何处理不同类型的请求
prompt = f"""
用户输入: {user_input}
请根据以下规则处理这个请求:
1. 如果是知识相关的问题,使用rag_tool查询知识库
2. 如果用户要求语音输出,使用tts_tool转换文本
3. 如果用户要求生成图像,使用image_tool生成
根据需求请选择合适的工具并执行操作,可能需要多个工具。
"""
self.image_url = None
self.audio_text = None
response = self.agent.chat(prompt)
response_dict = {"response": str(response), "image_url": self.image_url, "audio_text": self.audio_text }
return response_dict
if __name__ == "__main__":
## load wulewule agent
wulewule_assistant = load_wulewule_agent()
## streamlit setting
if "messages" not in st.session_state:
st.session_state["messages"] = []
# 在侧边栏中创建一个标题和一个链接
with st.sidebar:
st.markdown("## 悟了悟了💡")
logo_path = "assets/sd_wulewule.webp"
if os.path.exists(logo_path):
image = Image.open(logo_path)
st.image(image, caption='wulewule')
"[InternLM](https://github.com/InternLM)"
"[悟了悟了](https://github.com/xzyun2011/wulewule.git)"
# 创建一个标题
st.title("悟了悟了:黑神话悟空AI助手🐒")
# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
st.chat_message("user").write(msg["user"])
assistant_res = msg["assistant"]
if isinstance(assistant_res, str):
st.chat_message("assistant").write(assistant_res)
elif isinstance(assistant_res, dict):
image_url = assistant_res["image_url"]
audio_text = assistant_res["audio_text"]
st.chat_message("assistant").write(assistant_res["response"])
if image_url:
# 使用st.image展示URL图像,并设置使用列宽
st.image( image_url, width=256 )
if audio_text:
# 使用st.audio函数播放音频
st.audio("audio.mp3")
st.write(f"语音内容为: {audio_text}")
# Get user input #你觉得悟空长啥样,按你的想法画一个
if prompt := st.chat_input("请输入你的问题,换行使用Shfit+Enter。"):
# Display user input
st.chat_message("user").write(prompt)
## 初始化完整的回答字符串
full_answer = ""
with st.chat_message('robot'):
message_placeholder = st.empty()
response_dict = wulewule_assistant.chat(prompt)
image_url = response_dict["image_url"]
audio_text = response_dict["audio_text"]
for cur_response in response_dict["response"]:
full_answer += cur_response
# Display robot response in chat message container
message_placeholder.markdown(full_answer + '▌')
message_placeholder.markdown(full_answer)
# 将问答结果添加到 session_state 的消息历史中
st.session_state.messages.append({"user": prompt, "assistant": response_dict})
if image_url:
# 使用st.image展示URL图像,并设置使用列宽
st.image( image_url, width=256 )
if audio_text:
# 使用st.audio函数播放音频
st.audio("audio.mp3")
st.write(f"语音内容为: {audio_text}")