Spaces:
Sleeping
Sleeping
feat: Add DeepChopper Gradio app for DNA sequence analysis
Browse files- app.py +187 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing
|
| 2 |
+
from functools import partial
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import lightning
|
| 7 |
+
import torch
|
| 8 |
+
from datasets import Dataset
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
|
| 11 |
+
import deepchopper
|
| 12 |
+
from deepchopper.deepchopper import default, encode_qual, remove_intervals_and_keep_left, smooth_label_region
|
| 13 |
+
from deepchopper.models.llm import (
|
| 14 |
+
tokenize_and_align_labels_and_quals,
|
| 15 |
+
)
|
| 16 |
+
from deepchopper.utils import (
|
| 17 |
+
summary_predict,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def parse_fq_record(text: str):
|
| 22 |
+
"""Parse a single FASTQ record into a dictionary."""
|
| 23 |
+
lines = text.strip().split("\n")
|
| 24 |
+
for i in range(0, len(lines), 4):
|
| 25 |
+
content = lines[i : i + 4]
|
| 26 |
+
record_id, seq, _, qual = content
|
| 27 |
+
assert len(seq) == len(qual) # noqa: S101
|
| 28 |
+
|
| 29 |
+
yield {
|
| 30 |
+
"id": record_id,
|
| 31 |
+
"seq": seq,
|
| 32 |
+
"qual": encode_qual(qual, default.KMER_SIZE),
|
| 33 |
+
"target": [0, 0],
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_dataset(text: str, tokenizer):
|
| 38 |
+
"""Load dataset from text."""
|
| 39 |
+
dataset = Dataset.from_generator(parse_fq_record, gen_kwargs={"text": text}).with_format("torch")
|
| 40 |
+
tokenized_dataset = dataset.map(
|
| 41 |
+
partial(
|
| 42 |
+
tokenize_and_align_labels_and_quals,
|
| 43 |
+
tokenizer=tokenizer,
|
| 44 |
+
max_length=tokenizer.max_len_single_sentence,
|
| 45 |
+
),
|
| 46 |
+
num_proc=multiprocessing.cpu_count(), # type: ignore
|
| 47 |
+
).remove_columns(["id", "seq", "qual", "target"])
|
| 48 |
+
return dataset, tokenized_dataset
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def predict(
|
| 52 |
+
text: str,
|
| 53 |
+
smooth_window_size: int = 21,
|
| 54 |
+
min_interval_size: int = 13,
|
| 55 |
+
approved_interval_number: int = 20,
|
| 56 |
+
max_process_intervals: int = 8, # default is 4
|
| 57 |
+
batch_size: int = 1,
|
| 58 |
+
num_workers: int = 1,
|
| 59 |
+
):
|
| 60 |
+
tokenizer = deepchopper.models.llm.load_tokenizer_from_hyena_model(model_name="hyenadna-small-32k-seqlen")
|
| 61 |
+
dataset, tokenized_dataset = load_dataset(text, tokenizer)
|
| 62 |
+
|
| 63 |
+
dataloader = DataLoader(tokenized_dataset, batch_size=batch_size, num_workers=num_workers, persistent_workers=True)
|
| 64 |
+
model = deepchopper.DeepChopper.from_pretrained("yangliz5/deepchopper")
|
| 65 |
+
|
| 66 |
+
accelerator = "cpu" if torch.cuda.is_available() else "gpu"
|
| 67 |
+
trainer = lightning.pytorch.trainer.Trainer(
|
| 68 |
+
accelerator=accelerator,
|
| 69 |
+
devices=-1,
|
| 70 |
+
deterministic=False,
|
| 71 |
+
logger=False,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
predicts = trainer.predict(model=model, dataloaders=dataloader, return_predictions=True)
|
| 75 |
+
|
| 76 |
+
assert len(predicts) == 1 # noqa: S101
|
| 77 |
+
|
| 78 |
+
smooth_interval_json: list[dict[str, int]] = []
|
| 79 |
+
highlighted_text: list[tuple[str, str | None]] = []
|
| 80 |
+
|
| 81 |
+
for idx, preds in enumerate(predicts):
|
| 82 |
+
true_prediction, _true_label = summary_predict(predictions=preds[0], labels=preds[1])
|
| 83 |
+
|
| 84 |
+
_id = dataset[idx]["id"]
|
| 85 |
+
seq = dataset[idx]["seq"]
|
| 86 |
+
|
| 87 |
+
smooth_predict_targets = smooth_label_region(
|
| 88 |
+
true_prediction[0], smooth_window_size, min_interval_size, approved_interval_number
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if not smooth_predict_targets or len(smooth_predict_targets) > max_process_intervals:
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
# zip two consecutive elements
|
| 95 |
+
_selected_seqs, selected_intervals = remove_intervals_and_keep_left(seq, smooth_predict_targets)
|
| 96 |
+
total_intervals = sorted(selected_intervals + smooth_predict_targets)
|
| 97 |
+
|
| 98 |
+
smooth_interval_json.extend({"start": i[0], "end": i[1]} for i in smooth_predict_targets)
|
| 99 |
+
|
| 100 |
+
highlighted_text.extend(
|
| 101 |
+
(seq[interval[0] : interval[1]], "ada" if interval in smooth_predict_targets else None)
|
| 102 |
+
for interval in total_intervals
|
| 103 |
+
)
|
| 104 |
+
return smooth_interval_json, highlighted_text
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def process_input(text: str | None, file: str | None):
|
| 108 |
+
"""Process the input and return the prediction."""
|
| 109 |
+
if not text and not file:
|
| 110 |
+
gr.Warning("Both text and file are empty")
|
| 111 |
+
|
| 112 |
+
if file:
|
| 113 |
+
MAX_LINES = 4
|
| 114 |
+
file_content = []
|
| 115 |
+
with Path(file).open() as f:
|
| 116 |
+
for idx, line in enumerate(f):
|
| 117 |
+
if idx >= MAX_LINES:
|
| 118 |
+
break
|
| 119 |
+
file_content.append(line)
|
| 120 |
+
text = "".join(file_content)
|
| 121 |
+
return predict(text=text)
|
| 122 |
+
|
| 123 |
+
return predict(text=text)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def create_gradio_app():
|
| 127 |
+
"""Create a Gradio app for DeepChopper."""
|
| 128 |
+
example = (
|
| 129 |
+
"@1065:1135|393d635c-64f0-41ed-8531-12174d8efb28+f6a60069-1fcf-4049-8e7c-37523b4e273f\n"
|
| 130 |
+
"GCAGCTATGAATGCAAGGCCACAAGGTGGATGGAAGAGTTGTGGAACCAAAGAGCTGTCTTCCAGAGAAGATTTCGAGATAAGTCGCCCATCAGTGAACAAGATATTGTTGGTGGCATTTGATGAGAACGTTCCAAGATTATTGACAGATTAGTGAAAAGTAAGATTGAAATCATGACTGACCGTAAGTGGCAAGAAAGGGCTTTTGCCTTTGTAACCTTTGACGACCATGACTCCGTGGATAAGATTGTCATTCAGAATACCATACTGTGAATGGCCACATCTTTATTGTGAAGTTAGAAAAGCCCTGTCAAAGCAAGAGATGAATCAGTGCTTCTCCAGCCAAAGAGGTCGAAGTGGTTCTGGAAACTTTGGTGGTGGTCGTGGAGGTGGTTTCGGTGGGAATGACAACTCGGTCGTGGAGGAAACTTCAGTGGTCGTGGTGGCTTTGGTGGCAGCCGTGGTGGTGGTGGATATGGTGGCAGTGGGGATGGCTATAATGGATTTGGTAATGATGGAAGCAATTTGGAGGTGGTGGAAGCTACAATGATTTTGGGAATTACAACAATCAGTCTTCAAATTTTGGACCCCTAGGAGGAAATTTTGGTAGAAGCTCTGGCCCCATGGCGGTGGAGGCCAAATACTTTTGCAAACCACGAAACCAAGGTGGCTATGGCGGTCCAGCAGCAGCAGTAGCTATGGCAGTGGCAGAAGATTTTAATTAGGAAACAAAGCTTAGCAGGAGAGGAGAGCCAGAGAAGTGACAGGGAAGTACAGGTTACAACAGATTTGTGAACTCAGCCCAAGCACAGTGGTGGCAGGGCCTAGCTGCTACAAAGAAGACATGTTTTAGACAAATACTCATGTGTATGGGCAAAACTTGAGGACTGTATTTGTGACTAACTGTATAACAGGTTATTTTAGTTTCTGTTTGTGGAAAGTGTAAAGCATTCCAACAAAGGTTTTTAATGTAGATTTTTTTTTTTGCACCCCATGCTGTTGATTTGCTAAATGTAACAGTCTGATCGTGACGCTGAATAAATGTCTTTTTTAAAAAAAAAAAAAAGCTCCCTCCCATCCCCTGCTGCTAACTGATCCCATTATATCTAACCTGCCCCCCCATATCACCTGCTCCCGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGCATGTAGCAAAATAGTGGGAAGATTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCTAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGTAAAAAATCAACACCCA\n"
|
| 131 |
+
"+\n"
|
| 132 |
+
".0==?SSSSSSSSSSSH2216<868;SSSSSSSSSQQSRSIIHEDDESSSSSSJIKMGEKISSJJICCBDQ?;;8:;,**(&$'+501)\"#$()+%&&0<5+*/('%'))))'''$##\"\"\"\"%&--$\"\"\"('%)1L3*'')'#\"#&+*$&\"\"#*(&'''+,,<;9<BHGF//.LKORQSK<###%*-89<FSSSSE=BAFHFDB???3313NN?>=ANOSJDCADHGMOQSSD=7>BRRSPIEEEOQSSQ4->LIC7EE045///03IIJQSSSNGE6('.5??@A@=,,EGRSPKJ<==<556GFLLQRANSSSSSSSSG...*%%%(***(%'3@LOOSSSSM...7BCMMSSSSSSSSSSSSSSSDFIPSSSGGGGPOQLIHIL4103HMSILLNOSSSSSSSSSS22CBCGSHHHHSSSSSSSSD??@<<<:DDDSSSSSSSSSSA@6688OSSSSSROJJKLSNNNMSSSSQPOOSOOQSSSSSRRHIHISSRSSSSSSSSSSSJFF=??@SSQRK:424<444FFG///1S@@@ASNNNNPN:4JMDDLPSSSSSSBA?B?@@+'&'BD**8EDEFQPIMLE$$&',79CSJJPSGA+***DN;3-('&(;>6(()/-,,)%')1FRNNJ-:=>GC;&;CHNFFDCEEKJLFA22/27A.....HSQLHL))8<=?JSSSFGSKIHDDCCEFDAA@CFJKLNL>:9/1>>?OSLK@+HPSA;>>>K;;;;SSSSOQLPPMORSSSSSQSSSSSSS=:9**?D889SSRFFEDKJJJEEDKSSSNNOSSS.---,&*++SSSSQRSSSSQPGED<<89<@GJ999:SSKBBBAJHK=SSSJJKNMGHKKHQA<<>OPKFEAACDHJKMORB/)'((6**)15DA99;JSQSSS2())+J))EGMQOMMKJF>?<<AA620..D..,/112SOIIJSQFNEEEOMF?066=>@4,3;B>87FSSSSSSSSSSSSSSS<<::5658@AHMMSSRECC448/=<<>SSCB:5546;<??KF==;;FFEDFHKKJG):C>=>BJHINJFDPPPPPPPPPPPPPP%'*%$%+-%'(-22&&%('''&&&#\"\"%&'+0,,0;:1&\"\"%'(+++8'**(\"$$#&$'**//.3497$\"3CFHLOSSSSR:887:;;FSSRPRSSS4433$#$%&$$-056>@:;>=@?AHEFEC;*EKMSSRSRRDB>=AFRSSSSBSOOPSMDAABHH976951-9DHPQO/---?@ELSSQSRJHKKBKKLSSLINSOSSQSRIMSSSSSS>?MKIINSSGSSSSSSSQQMK544MJKKNKHGGLFFGBDB?EHIKGD?@DHPPIIF555)&(+,ADSSSSRQSSSQSS=9/0JJMSQSOSSO/97=B@=:>"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
custom_css = """
|
| 136 |
+
.header { text-align: center; margin-bottom: 30px; }
|
| 137 |
+
.footer { text-align: center; margin-top: 30px; font-size: 0.8em; color: #666; }
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 141 |
+
gr.HTML(
|
| 142 |
+
"""
|
| 143 |
+
<div class="header">
|
| 144 |
+
<h1>🧬 DeepChopper: DNA Sequence Analysis</h1>
|
| 145 |
+
<p>Analyze DNA sequences and detect artificial sequences</p>
|
| 146 |
+
</div>
|
| 147 |
+
"""
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
with gr.Row():
|
| 151 |
+
with gr.Column(scale=1):
|
| 152 |
+
text_input = gr.Textbox(
|
| 153 |
+
label="Input DNA Sequence", placeholder="Paste your DNA sequence here...", lines=10
|
| 154 |
+
)
|
| 155 |
+
file_input = gr.File(label="Or upload a FASTQ file")
|
| 156 |
+
submit_btn = gr.Button("Analyze", variant="primary")
|
| 157 |
+
|
| 158 |
+
with gr.Column(scale=1):
|
| 159 |
+
json_output = gr.JSON(label="Detected Artificial Regions")
|
| 160 |
+
highlighted_text = gr.HighlightedText(label="Highlighted Sequence")
|
| 161 |
+
|
| 162 |
+
submit_btn.click(fn=process_input, inputs=[text_input, file_input], outputs=[json_output, highlighted_text])
|
| 163 |
+
|
| 164 |
+
gr.Examples(
|
| 165 |
+
examples=[[example]],
|
| 166 |
+
inputs=[text_input],
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
gr.HTML(
|
| 170 |
+
"""
|
| 171 |
+
<div class="footer">
|
| 172 |
+
<p>DeepChopper - Powered by AI for DNA sequence analysis</p>
|
| 173 |
+
</div>
|
| 174 |
+
"""
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
return demo
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def main():
|
| 181 |
+
"""Launch the Gradio app."""
|
| 182 |
+
app = create_gradio_app()
|
| 183 |
+
app.launch()
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
if __name__ == "__main__":
|
| 187 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.1.0
|
| 2 |
+
lightning>=2.1.2
|
| 3 |
+
datasets>=2.17.1
|
| 4 |
+
deepchopper>=1.0.1
|