Spaces:
Sleeping
Sleeping
YanBoChen
commited on
Commit
·
253609b
1
Parent(s):
16ee1e5
fix(mild bug): enhance user query prompts (more robust dealing process with .txt or .json) and add postpartum hemorrhage condition mapping
Browse files- evaluation/user_query.txt +7 -7
- src/llm_clients.py +109 -4
- src/medical_conditions.py +4 -0
evaluation/user_query.txt
CHANGED
|
@@ -17,18 +17,18 @@ Suspected acute ischemic stroke. Tell me the next steps to take
|
|
| 17 |
|
| 18 |
### 一、Diagnosis-Focused(診斷為主)
|
| 19 |
|
| 20 |
-
1. I have a 68-year-old man with atrial fibrillation presenting with sudden slurred speech and right-sided weakness
|
| 21 |
-
2. A 40-year-old woman reports fever, urinary frequency, and dysuria
|
| 22 |
-
3. A 50-year-old patient has progressive dyspnea on exertion and orthopnea over two weeks
|
| 23 |
|
| 24 |
### 二、Treatment-Focused(治療為主)
|
| 25 |
|
| 26 |
-
4. ECG shows a suspected acute STEMI
|
| 27 |
-
5. I have a patient diagnosed with bacterial meningitis
|
| 28 |
6. A patient is in septic shock with BP 80/50 mmHg and HR 120 bpm—what fluid resuscitation and vasopressor strategy would you recommend?
|
| 29 |
|
| 30 |
### 三、Mixed(診斷+治療綜合)
|
| 31 |
|
| 32 |
7. A 75-year-old diabetic presents with a non-healing foot ulcer and fever—what differential for osteomyelitis, diagnostic workup, and management plan do you suggest?
|
| 33 |
-
8. A 60-year-old COPD patient has worsening dyspnea and hypercapnia on ABG
|
| 34 |
-
9. A 28-year-old woman is experiencing postpartum hemorrhage
|
|
|
|
| 17 |
|
| 18 |
### 一、Diagnosis-Focused(診斷為主)
|
| 19 |
|
| 20 |
+
1. I have a 68-year-old man with atrial fibrillation presenting with sudden slurred speech and right-sided weakness. what are the possible diagnoses, and how would you evaluate them?
|
| 21 |
+
2. A 40-year-old woman reports fever, urinary frequency, and dysuria. what differential diagnoses should I consider, and which tests would you order?
|
| 22 |
+
3. A 50-year-old patient has progressive dyspnea on exertion and orthopnea over two weeks. what are the likely causes, and what diagnostic steps should I take?
|
| 23 |
|
| 24 |
### 二、Treatment-Focused(治療為主)
|
| 25 |
|
| 26 |
+
4. ECG shows a suspected acute STEMI. what immediate interventions should I initiate in the next five minutes?
|
| 27 |
+
5. I have a patient diagnosed with bacterial meningitis. What empiric antibiotic regimen and supportive measures should I implement?
|
| 28 |
6. A patient is in septic shock with BP 80/50 mmHg and HR 120 bpm—what fluid resuscitation and vasopressor strategy would you recommend?
|
| 29 |
|
| 30 |
### 三、Mixed(診斷+治療綜合)
|
| 31 |
|
| 32 |
7. A 75-year-old diabetic presents with a non-healing foot ulcer and fever—what differential for osteomyelitis, diagnostic workup, and management plan do you suggest?
|
| 33 |
+
8. A 60-year-old COPD patient has worsening dyspnea and hypercapnia on ABG. How would you confirm the diagnosis, and what is your stepwise treatment approach?
|
| 34 |
+
9. A 28-year-old woman is experiencing postpartum hemorrhage. what are the possible causes, what immediate resuscitation steps should I take, and how would you proceed with definitive management?
|
src/llm_clients.py
CHANGED
|
@@ -9,6 +9,8 @@ Date: 2025-07-29
|
|
| 9 |
|
| 10 |
import logging
|
| 11 |
import os
|
|
|
|
|
|
|
| 12 |
from typing import Dict, Optional, Union
|
| 13 |
from huggingface_hub import InferenceClient
|
| 14 |
from dotenv import load_dotenv
|
|
@@ -68,6 +70,91 @@ class llm_Med42_70BClient:
|
|
| 68 |
self.logger.error(f"Detailed Error: {repr(e)}")
|
| 69 |
raise ValueError(f"Failed to initialize Medical LLM client: {str(e)}") from e
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def analyze_medical_query(
|
| 72 |
self,
|
| 73 |
query: str,
|
|
@@ -138,6 +225,27 @@ class llm_Med42_70BClient:
|
|
| 138 |
self.logger.info(f"Raw LLM Response: {response_text}")
|
| 139 |
self.logger.info(f"Query Latency: {latency:.4f} seconds")
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
# Detect abnormal response
|
| 142 |
if self._is_abnormal_response(response_text):
|
| 143 |
self.logger.error(f"❌ Abnormal LLM response detected: {response_text[:50]}...")
|
|
@@ -149,15 +257,12 @@ class llm_Med42_70BClient:
|
|
| 149 |
'latency': latency
|
| 150 |
}
|
| 151 |
|
| 152 |
-
# Extract condition from response
|
| 153 |
-
extracted_condition = self._extract_condition(response_text)
|
| 154 |
-
|
| 155 |
# Log the extracted condition
|
| 156 |
self.logger.info(f"Extracted Condition: {extracted_condition}")
|
| 157 |
|
| 158 |
return {
|
| 159 |
'extracted_condition': extracted_condition,
|
| 160 |
-
'confidence':
|
| 161 |
'raw_response': response_text,
|
| 162 |
'latency': latency # Add latency to the return dictionary
|
| 163 |
}
|
|
|
|
| 9 |
|
| 10 |
import logging
|
| 11 |
import os
|
| 12 |
+
import json
|
| 13 |
+
import re
|
| 14 |
from typing import Dict, Optional, Union
|
| 15 |
from huggingface_hub import InferenceClient
|
| 16 |
from dotenv import load_dotenv
|
|
|
|
| 70 |
self.logger.error(f"Detailed Error: {repr(e)}")
|
| 71 |
raise ValueError(f"Failed to initialize Medical LLM client: {str(e)}") from e
|
| 72 |
|
| 73 |
+
def fix_json_formatting(self, response_text: str) -> str:
|
| 74 |
+
"""
|
| 75 |
+
Fix common JSON formatting errors
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
response_text: Raw response text that may contain JSON errors
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
Fixed JSON string
|
| 82 |
+
"""
|
| 83 |
+
# 1. Fix missing commas between key-value pairs
|
| 84 |
+
# Look for "value" "key" pattern and add comma
|
| 85 |
+
fixed = re.sub(r'"\s*\n\s*"', '",\n "', response_text)
|
| 86 |
+
|
| 87 |
+
# 2. Fix missing commas between values and keys
|
| 88 |
+
fixed = re.sub(r'"\s*(["\[])', '",\1', fixed)
|
| 89 |
+
|
| 90 |
+
# 3. Remove trailing commas
|
| 91 |
+
fixed = re.sub(r',\s*}', '}', fixed)
|
| 92 |
+
fixed = re.sub(r',\s*]', ']', fixed)
|
| 93 |
+
|
| 94 |
+
# 4. Ensure string values are properly quoted
|
| 95 |
+
fixed = re.sub(r':\s*([^",{}\[\]]+)\s*([,}])', r': "\1"\2', fixed)
|
| 96 |
+
|
| 97 |
+
return fixed
|
| 98 |
+
|
| 99 |
+
def parse_medical_response(self, response_text: str) -> Dict:
|
| 100 |
+
"""
|
| 101 |
+
Enhanced JSON parsing logic with error recovery
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
response_text: Raw response text from Med42-70B
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Parsed response dictionary
|
| 108 |
+
"""
|
| 109 |
+
try:
|
| 110 |
+
return json.loads(response_text)
|
| 111 |
+
except json.JSONDecodeError as e:
|
| 112 |
+
self.logger.warning(f"Initial JSON parsing failed: {e}")
|
| 113 |
+
|
| 114 |
+
# Attempt to fix common JSON errors
|
| 115 |
+
try:
|
| 116 |
+
fixed_response = self.fix_json_formatting(response_text)
|
| 117 |
+
self.logger.info("Attempting to parse fixed JSON")
|
| 118 |
+
return json.loads(fixed_response)
|
| 119 |
+
except json.JSONDecodeError as e2:
|
| 120 |
+
self.logger.error(f"Fixed JSON parsing also failed: {e2}")
|
| 121 |
+
|
| 122 |
+
# Try to extract partial information
|
| 123 |
+
try:
|
| 124 |
+
return self.extract_partial_medical_info(response_text)
|
| 125 |
+
except:
|
| 126 |
+
# Final fallback format
|
| 127 |
+
return {
|
| 128 |
+
"extracted_condition": "parsing_error",
|
| 129 |
+
"confidence": "0.0",
|
| 130 |
+
"is_medical": True,
|
| 131 |
+
"raw_response": response_text,
|
| 132 |
+
"error": str(e)
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
def extract_partial_medical_info(self, response_text: str) -> Dict:
|
| 136 |
+
"""
|
| 137 |
+
Extract partial medical information from malformed response
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
response_text: Malformed response text
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
Dictionary with extracted information
|
| 144 |
+
"""
|
| 145 |
+
# Try to extract condition
|
| 146 |
+
condition_match = re.search(r'"extracted_condition":\s*"([^"]*)"', response_text)
|
| 147 |
+
confidence_match = re.search(r'"confidence":\s*"([^"]*)"', response_text)
|
| 148 |
+
medical_match = re.search(r'"is_medical":\s*(true|false)', response_text)
|
| 149 |
+
|
| 150 |
+
return {
|
| 151 |
+
"extracted_condition": condition_match.group(1) if condition_match else "unknown",
|
| 152 |
+
"confidence": confidence_match.group(1) if confidence_match else "0.0",
|
| 153 |
+
"is_medical": medical_match.group(1) == "true" if medical_match else True,
|
| 154 |
+
"raw_response": response_text,
|
| 155 |
+
"parsing_method": "partial_extraction"
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
def analyze_medical_query(
|
| 159 |
self,
|
| 160 |
query: str,
|
|
|
|
| 225 |
self.logger.info(f"Raw LLM Response: {response_text}")
|
| 226 |
self.logger.info(f"Query Latency: {latency:.4f} seconds")
|
| 227 |
|
| 228 |
+
# Enhanced response parsing - handle both JSON and text formats
|
| 229 |
+
try:
|
| 230 |
+
# Try to parse as JSON first (in case API returns JSON)
|
| 231 |
+
parsed_response = self.parse_medical_response(response_text)
|
| 232 |
+
|
| 233 |
+
# If it's a valid JSON response, extract condition from it
|
| 234 |
+
if isinstance(parsed_response, dict) and 'extracted_condition' in parsed_response:
|
| 235 |
+
extracted_condition = parsed_response.get('extracted_condition', '')
|
| 236 |
+
confidence = parsed_response.get('confidence', '0.8')
|
| 237 |
+
self.logger.info(f"Parsed JSON response - Condition: {extracted_condition}")
|
| 238 |
+
else:
|
| 239 |
+
# Fallback to text extraction
|
| 240 |
+
extracted_condition = self._extract_condition(response_text)
|
| 241 |
+
confidence = '0.8'
|
| 242 |
+
|
| 243 |
+
except Exception as parse_error:
|
| 244 |
+
self.logger.warning(f"Response parsing failed: {parse_error}")
|
| 245 |
+
# Fallback to text extraction
|
| 246 |
+
extracted_condition = self._extract_condition(response_text)
|
| 247 |
+
confidence = '0.8'
|
| 248 |
+
|
| 249 |
# Detect abnormal response
|
| 250 |
if self._is_abnormal_response(response_text):
|
| 251 |
self.logger.error(f"❌ Abnormal LLM response detected: {response_text[:50]}...")
|
|
|
|
| 257 |
'latency': latency
|
| 258 |
}
|
| 259 |
|
|
|
|
|
|
|
|
|
|
| 260 |
# Log the extracted condition
|
| 261 |
self.logger.info(f"Extracted Condition: {extracted_condition}")
|
| 262 |
|
| 263 |
return {
|
| 264 |
'extracted_condition': extracted_condition,
|
| 265 |
+
'confidence': confidence,
|
| 266 |
'raw_response': response_text,
|
| 267 |
'latency': latency # Add latency to the return dictionary
|
| 268 |
}
|
src/medical_conditions.py
CHANGED
|
@@ -63,6 +63,10 @@ CONDITION_KEYWORD_MAPPING: Dict[str, Dict[str, str]] = {
|
|
| 63 |
"seizure disorder": {
|
| 64 |
"emergency": "seizure|status epilepticus|postictal state",
|
| 65 |
"treatment": "antiepileptic drugs|EEG monitoring|neurology consult"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
}
|
| 67 |
}
|
| 68 |
|
|
|
|
| 63 |
"seizure disorder": {
|
| 64 |
"emergency": "seizure|status epilepticus|postictal state",
|
| 65 |
"treatment": "antiepileptic drugs|EEG monitoring|neurology consult"
|
| 66 |
+
},
|
| 67 |
+
"postpartum_hemorrhage": {
|
| 68 |
+
"emergency": "postpartum hemorrhage|uterine atony|placental retention|vaginal laceration",
|
| 69 |
+
"treatment": "uterine massage|IV oxytocin infusion|blood transfusion|surgical intervention"
|
| 70 |
}
|
| 71 |
}
|
| 72 |
|