Spaces:
Sleeping
feat(data_processing): Implement token length control with semantic preservation
Browse filesBREAKING CHANGE: Modify chunk creation to handle >512 token texts
Problem:
- Token indices sequence length exceeding model's maximum (512 tokens)
- Risk of semantic information loss during text chunking
- Potential impact on medical term context preservation
Solution:
1. Dynamic Character-to-Token Ratio
- Calculate average chars_per_token from sample text
- Use ratio to estimate initial chunk boundaries
- Prevents tokenizing entire long document at once
2. Semantic-Aware Chunking
- Set ROUGH_CHUNK_TARGET_TOKENS = 512
- Keep keywords centered in chunks
- Maintain context window around keywords
- Ensure rough_chunk stays within token limit
3. Overlap Strategy
- Implement sliding window with 64-token overlap
- Preserve context across chunk boundaries
- Maintain semantic continuity
- Prevent information loss at chunk edges
Technical Details:
- Target chunk size: 512 tokens (maximum model limit)
- Overlap size: 64 tokens (empirically determined)
- Dynamic ratio calculation using sample text
- Centered keyword positioning
Impact:
β Eliminates token length warnings
β Preserves medical term context
β Maintains semantic relationships
β Improves retrieval quality
β Optimizes processing efficiency
Testing:
- Verified with long medical texts
- Confirmed keyword context preservation
- Validated chunk boundary handling
- Tested overlap effectiveness
Co-authored-by: YanBo Chen
- commit_message_embedding_update.txt +0 -43
- src/__init__.py +8 -0
- src/commit_message_20250726_data_processing.txt +0 -52
- src/commit_message_embedding_update.txt +0 -43
- src/data_processing.py +163 -54
- tests/test_embedding_and_index.py +29 -0
|
@@ -1,43 +0,0 @@
|
|
| 1 |
-
refactor(data_processing): optimize chunking strategy with token-based approach
|
| 2 |
-
|
| 3 |
-
BREAKING CHANGE: Switch from character-based to token-based chunking and improve keyword context preservation
|
| 4 |
-
|
| 5 |
-
- Replace character-based chunking with token-based approach using PubMedBERT tokenizer
|
| 6 |
-
- Set chunk_size to 256 tokens and chunk_overlap to 64 tokens for optimal performance
|
| 7 |
-
- Implement dynamic chunking strategy centered around medical keywords
|
| 8 |
-
- Add token count validation to ensure semantic integrity
|
| 9 |
-
- Optimize memory usage with lazy loading of tokenizer and model
|
| 10 |
-
- Update chunking methods to handle token-level operations
|
| 11 |
-
- Add comprehensive logging for debugging token counts
|
| 12 |
-
- Update tests to verify token-based chunking behavior
|
| 13 |
-
|
| 14 |
-
Recent Improvements:
|
| 15 |
-
- Fix keyword context preservation in chunks
|
| 16 |
-
- Implement separate tokenization for pre-keyword and post-keyword text
|
| 17 |
-
- Add precise boundary calculation based on keyword length
|
| 18 |
-
- Ensure medical terms (e.g., "ST elevation") remain intact
|
| 19 |
-
- Improve chunk boundary calculations to maintain keyword context
|
| 20 |
-
- Add validation to verify keyword presence in generated chunks
|
| 21 |
-
|
| 22 |
-
Technical Details:
|
| 23 |
-
- chunk_size: 256 tokens (based on PubMedBERT context window)
|
| 24 |
-
- overlap: 64 tokens (25% overlap for context continuity)
|
| 25 |
-
- Model: NeuML/pubmedbert-base-embeddings (768 dims)
|
| 26 |
-
- Tokenizer: Same as embedding model for consistency
|
| 27 |
-
- Keyword-centered chunking with balanced context distribution
|
| 28 |
-
|
| 29 |
-
Performance Impact:
|
| 30 |
-
- Improved semantic coherence in chunks
|
| 31 |
-
- Better handling of medical terminology
|
| 32 |
-
- Reduced redundancy in overlapping regions
|
| 33 |
-
- Optimized for downstream retrieval tasks
|
| 34 |
-
- Enhanced preservation of medical term context
|
| 35 |
-
- More accurate chunk boundaries around keywords
|
| 36 |
-
|
| 37 |
-
Testing:
|
| 38 |
-
- Added token count validation in tests
|
| 39 |
-
- Verified keyword preservation in chunks
|
| 40 |
-
- Confirmed overlap handling
|
| 41 |
-
- Tested with sample medical texts
|
| 42 |
-
- Validated medical terminology preservation
|
| 43 |
-
- Verified chunk context balance around keywords
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
OnCall.ai src package
|
| 3 |
+
|
| 4 |
+
This package contains the core implementation of the OnCall.ai system.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
# Version
|
| 8 |
+
__version__ = '0.1.0'
|
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
feat(data-processing): implement data processing pipeline with embeddings
|
| 2 |
-
|
| 3 |
-
BREAKING CHANGE: Add data processing implementation with robust path handling and improved text processing
|
| 4 |
-
|
| 5 |
-
Key Changes:
|
| 6 |
-
1. Create DataProcessor class for medical data processing:
|
| 7 |
-
- Handle paths with spaces and special characters
|
| 8 |
-
- Support dataset/dataset directory structure
|
| 9 |
-
- Add detailed logging for debugging
|
| 10 |
-
- Implement case-insensitive text processing
|
| 11 |
-
|
| 12 |
-
2. Implement core functionalities:
|
| 13 |
-
- Load filtered emergency and treatment data
|
| 14 |
-
- Create intelligent chunks based on matched keywords
|
| 15 |
-
- Generate embeddings using NeuML/pubmedbert-base-embeddings
|
| 16 |
-
- Build ANNOY indices for vector search
|
| 17 |
-
- Save embeddings and metadata separately
|
| 18 |
-
- Improve keyword matching with case-insensitive comparison
|
| 19 |
-
- Add proper chunk boundary calculations for medical terms
|
| 20 |
-
|
| 21 |
-
3. Add test coverage:
|
| 22 |
-
- Basic data loading tests
|
| 23 |
-
- Chunking functionality tests
|
| 24 |
-
- Model loading tests
|
| 25 |
-
- Token-based chunking validation
|
| 26 |
-
- Medical terminology preservation tests
|
| 27 |
-
|
| 28 |
-
Technical Details:
|
| 29 |
-
- Use pathlib.Path.resolve() for robust path handling
|
| 30 |
-
- Separate storage for embeddings and indices:
|
| 31 |
-
* /models/embeddings/ for vector representations
|
| 32 |
-
* /models/indices/annoy/ for search indices
|
| 33 |
-
- Keep keywords as metadata without embedding
|
| 34 |
-
- Implement case-insensitive text processing while preserving medical term integrity
|
| 35 |
-
- Add proper chunk overlap handling
|
| 36 |
-
|
| 37 |
-
Testing:
|
| 38 |
-
β
Data loading: 11,914 emergency + 11,023 treatment records
|
| 39 |
-
β
Chunking: Successful with keyword-centered approach
|
| 40 |
-
β
Model loading: NeuML/pubmedbert-base-embeddings (768 dims)
|
| 41 |
-
β
Token chunking: Verified with medical terms (e.g., "ST elevation")
|
| 42 |
-
|
| 43 |
-
Storage Structure:
|
| 44 |
-
/models/
|
| 45 |
-
βββ embeddings/ # Vector representations
|
| 46 |
-
βββ indices/
|
| 47 |
-
βββ annoy/ # Search indices (.ann files)
|
| 48 |
-
|
| 49 |
-
Next Steps:
|
| 50 |
-
- Integrate with Meditron for enhanced processing
|
| 51 |
-
- Implement prompt engineering
|
| 52 |
-
- Add hybrid search functionality
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,43 +0,0 @@
|
|
| 1 |
-
refactor(data_processing): optimize chunking strategy with token-based approach
|
| 2 |
-
|
| 3 |
-
BREAKING CHANGE: Switch from character-based to token-based chunking and improve keyword context preservation
|
| 4 |
-
|
| 5 |
-
- Replace character-based chunking with token-based approach using PubMedBERT tokenizer
|
| 6 |
-
- Set chunk_size to 256 tokens and chunk_overlap to 64 tokens for optimal performance
|
| 7 |
-
- Implement dynamic chunking strategy centered around medical keywords
|
| 8 |
-
- Add token count validation to ensure semantic integrity
|
| 9 |
-
- Optimize memory usage with lazy loading of tokenizer and model
|
| 10 |
-
- Update chunking methods to handle token-level operations
|
| 11 |
-
- Add comprehensive logging for debugging token counts
|
| 12 |
-
- Update tests to verify token-based chunking behavior
|
| 13 |
-
|
| 14 |
-
Recent Improvements:
|
| 15 |
-
- Fix keyword context preservation in chunks
|
| 16 |
-
- Implement separate tokenization for pre-keyword and post-keyword text
|
| 17 |
-
- Add precise boundary calculation based on keyword length
|
| 18 |
-
- Ensure medical terms (e.g., "ST elevation") remain intact
|
| 19 |
-
- Improve chunk boundary calculations to maintain keyword context
|
| 20 |
-
- Add validation to verify keyword presence in generated chunks
|
| 21 |
-
|
| 22 |
-
Technical Details:
|
| 23 |
-
- chunk_size: 256 tokens (based on PubMedBERT context window)
|
| 24 |
-
- overlap: 64 tokens (25% overlap for context continuity)
|
| 25 |
-
- Model: NeuML/pubmedbert-base-embeddings (768 dims)
|
| 26 |
-
- Tokenizer: Same as embedding model for consistency
|
| 27 |
-
- Keyword-centered chunking with balanced context distribution
|
| 28 |
-
|
| 29 |
-
Performance Impact:
|
| 30 |
-
- Improved semantic coherence in chunks
|
| 31 |
-
- Better handling of medical terminology
|
| 32 |
-
- Reduced redundancy in overlapping regions
|
| 33 |
-
- Optimized for downstream retrieval tasks
|
| 34 |
-
- Enhanced preservation of medical term context
|
| 35 |
-
- More accurate chunk boundaries around keywords
|
| 36 |
-
|
| 37 |
-
Testing:
|
| 38 |
-
- Added token count validation in tests
|
| 39 |
-
- Verified keyword preservation in chunks
|
| 40 |
-
- Confirmed overlap handling
|
| 41 |
-
- Tested with sample medical texts
|
| 42 |
-
- Validated medical terminology preservation
|
| 43 |
-
- Verified chunk context balance around keywords
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -21,6 +21,7 @@ from typing import List, Dict, Tuple, Any
|
|
| 21 |
from sentence_transformers import SentenceTransformer
|
| 22 |
from annoy import AnnoyIndex
|
| 23 |
import logging
|
|
|
|
| 24 |
|
| 25 |
# Setup logging
|
| 26 |
logging.basicConfig(
|
|
@@ -141,10 +142,23 @@ class DataProcessor:
|
|
| 141 |
chunk_size = chunk_size or self.chunk_size
|
| 142 |
chunks = []
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
for i, keyword in enumerate(keywords):
|
| 149 |
# Find keyword position in text (already lowercase)
|
| 150 |
keyword_pos = text.find(keyword)
|
|
@@ -153,53 +167,66 @@ class DataProcessor:
|
|
| 153 |
# Get the keyword text (already lowercase)
|
| 154 |
actual_keyword = text[keyword_pos:keyword_pos + len(keyword)]
|
| 155 |
|
| 156 |
-
#
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
tokens_after = self.tokenizer.tokenize(text_after)
|
| 164 |
|
| 165 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
keyword_start_pos = len(tokens_before)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
keyword_length = len(keyword_tokens)
|
| 168 |
|
| 169 |
-
# Calculate
|
| 170 |
tokens_each_side = (chunk_size - keyword_length) // 2
|
| 171 |
-
|
| 172 |
-
# Calculate chunk boundaries
|
| 173 |
chunk_start = max(0, keyword_start_pos - tokens_each_side)
|
| 174 |
-
chunk_end = min(
|
| 175 |
|
| 176 |
# Add overlap if possible
|
| 177 |
if chunk_start > 0:
|
| 178 |
chunk_start = max(0, chunk_start - self.chunk_overlap)
|
| 179 |
-
if chunk_end <
|
| 180 |
-
chunk_end = min(
|
| 181 |
|
| 182 |
-
# Extract
|
| 183 |
-
|
| 184 |
-
chunk_text = self.tokenizer.convert_tokens_to_string(
|
| 185 |
|
| 186 |
-
# Verify
|
| 187 |
if chunk_text and actual_keyword in chunk_text:
|
| 188 |
chunk_info = {
|
| 189 |
"text": chunk_text,
|
| 190 |
"primary_keyword": actual_keyword,
|
| 191 |
"all_matched_keywords": matched_keywords.lower(),
|
| 192 |
-
"
|
| 193 |
-
"token_start": chunk_start,
|
| 194 |
-
"token_end": chunk_end,
|
| 195 |
-
"token_count": len(chunk_tokens),
|
| 196 |
"chunk_id": f"{doc_id}_chunk_{i}" if doc_id else f"chunk_{i}",
|
| 197 |
"source_doc_id": doc_id
|
| 198 |
}
|
| 199 |
chunks.append(chunk_info)
|
| 200 |
-
logger.info(f"Created chunk for keyword '{actual_keyword}' with {len(chunk_tokens)} tokens")
|
| 201 |
else:
|
| 202 |
-
logger.
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
return chunks
|
| 205 |
|
|
@@ -276,14 +303,17 @@ class DataProcessor:
|
|
| 276 |
|
| 277 |
def process_emergency_chunks(self) -> List[Dict[str, Any]]:
|
| 278 |
"""Process emergency data into chunks"""
|
| 279 |
-
logger.info("Processing emergency data into chunks...")
|
| 280 |
-
|
| 281 |
if self.emergency_data is None:
|
| 282 |
raise ValueError("Emergency data not loaded. Call load_filtered_data() first.")
|
| 283 |
|
| 284 |
all_chunks = []
|
| 285 |
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
if pd.notna(row.get('clean_text')) and pd.notna(row.get('matched')):
|
| 288 |
chunks = self.create_keyword_centered_chunks(
|
| 289 |
text=row['clean_text'],
|
|
@@ -305,19 +335,22 @@ class DataProcessor:
|
|
| 305 |
all_chunks.extend(chunks)
|
| 306 |
|
| 307 |
self.emergency_chunks = all_chunks
|
| 308 |
-
logger.info(f"
|
| 309 |
return all_chunks
|
| 310 |
|
| 311 |
def process_treatment_chunks(self) -> List[Dict[str, Any]]:
|
| 312 |
"""Process treatment data into chunks"""
|
| 313 |
-
logger.info("Processing treatment data into chunks...")
|
| 314 |
-
|
| 315 |
if self.treatment_data is None:
|
| 316 |
raise ValueError("Treatment data not loaded. Call load_filtered_data() first.")
|
| 317 |
|
| 318 |
all_chunks = []
|
| 319 |
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
if (pd.notna(row.get('clean_text')) and
|
| 322 |
pd.notna(row.get('treatment_matched'))):
|
| 323 |
|
|
@@ -343,13 +376,39 @@ class DataProcessor:
|
|
| 343 |
all_chunks.extend(chunks)
|
| 344 |
|
| 345 |
self.treatment_chunks = all_chunks
|
| 346 |
-
logger.info(f"
|
| 347 |
return all_chunks
|
| 348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
def generate_embeddings(self, chunks: List[Dict[str, Any]],
|
| 350 |
chunk_type: str = "emergency") -> np.ndarray:
|
| 351 |
"""
|
| 352 |
-
Generate embeddings for chunks
|
| 353 |
|
| 354 |
Args:
|
| 355 |
chunks: List of chunk dictionaries
|
|
@@ -358,28 +417,78 @@ class DataProcessor:
|
|
| 358 |
Returns:
|
| 359 |
numpy array of embeddings
|
| 360 |
"""
|
| 361 |
-
logger.info(f"
|
| 362 |
-
|
| 363 |
-
#
|
| 364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
-
#
|
| 367 |
-
|
| 368 |
|
| 369 |
-
#
|
| 370 |
-
|
| 371 |
-
|
| 372 |
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
embeddings.append(batch_embeddings)
|
| 377 |
|
| 378 |
-
#
|
| 379 |
-
|
|
|
|
| 380 |
|
| 381 |
-
|
| 382 |
-
return all_embeddings
|
| 383 |
|
| 384 |
def build_annoy_index(self, embeddings: np.ndarray,
|
| 385 |
index_name: str, n_trees: int = 15) -> AnnoyIndex:
|
|
|
|
| 21 |
from sentence_transformers import SentenceTransformer
|
| 22 |
from annoy import AnnoyIndex
|
| 23 |
import logging
|
| 24 |
+
from tqdm import tqdm
|
| 25 |
|
| 26 |
# Setup logging
|
| 27 |
logging.basicConfig(
|
|
|
|
| 142 |
chunk_size = chunk_size or self.chunk_size
|
| 143 |
chunks = []
|
| 144 |
|
| 145 |
+
# Calculate character-to-token ratio using a sample around the first keyword
|
| 146 |
+
if keywords:
|
| 147 |
+
first_keyword = keywords[0]
|
| 148 |
+
first_pos = text.find(first_keyword)
|
| 149 |
+
if first_pos != -1:
|
| 150 |
+
# Take a sample around the first keyword for ratio calculation
|
| 151 |
+
sample_start = max(0, first_pos - 100)
|
| 152 |
+
sample_end = min(len(text), first_pos + len(first_keyword) + 100)
|
| 153 |
+
sample_text = text[sample_start:sample_end]
|
| 154 |
+
sample_tokens = len(self.tokenizer.tokenize(sample_text))
|
| 155 |
+
chars_per_token = len(sample_text) / sample_tokens if sample_tokens > 0 else 4.0
|
| 156 |
+
else:
|
| 157 |
+
chars_per_token = 4.0 # Fallback ratio
|
| 158 |
+
else:
|
| 159 |
+
chars_per_token = 4.0 # Default ratio
|
| 160 |
+
|
| 161 |
+
# Process keywords
|
| 162 |
for i, keyword in enumerate(keywords):
|
| 163 |
# Find keyword position in text (already lowercase)
|
| 164 |
keyword_pos = text.find(keyword)
|
|
|
|
| 167 |
# Get the keyword text (already lowercase)
|
| 168 |
actual_keyword = text[keyword_pos:keyword_pos + len(keyword)]
|
| 169 |
|
| 170 |
+
# Calculate rough window size using dynamic ratio
|
| 171 |
+
# Cap the rough chunk target token size to prevent tokenizer warnings
|
| 172 |
+
# Use 512 tokens as target (model's max limit)
|
| 173 |
+
ROUGH_CHUNK_TARGET_TOKENS = 512
|
| 174 |
+
char_window = int(ROUGH_CHUNK_TARGET_TOKENS * chars_per_token / 2)
|
| 175 |
|
| 176 |
+
# Get rough chunk boundaries in characters
|
| 177 |
+
rough_start = max(0, keyword_pos - char_window)
|
| 178 |
+
rough_end = min(len(text), keyword_pos + len(keyword) + char_window)
|
|
|
|
| 179 |
|
| 180 |
+
# Extract rough chunk for processing
|
| 181 |
+
rough_chunk = text[rough_start:rough_end]
|
| 182 |
+
|
| 183 |
+
# Find keyword's relative position in rough chunk
|
| 184 |
+
rel_pos = rough_chunk.find(actual_keyword)
|
| 185 |
+
if rel_pos == -1:
|
| 186 |
+
logger.debug(f"Could not locate keyword '{actual_keyword}' in rough chunk for doc {doc_id}")
|
| 187 |
+
continue
|
| 188 |
+
|
| 189 |
+
# Calculate token position by tokenizing text before keyword
|
| 190 |
+
text_before = rough_chunk[:rel_pos]
|
| 191 |
+
tokens_before = self.tokenizer.tokenize(text_before)
|
| 192 |
keyword_start_pos = len(tokens_before)
|
| 193 |
+
|
| 194 |
+
# Tokenize necessary parts
|
| 195 |
+
chunk_tokens = self.tokenizer.tokenize(rough_chunk)
|
| 196 |
+
keyword_tokens = self.tokenizer.tokenize(actual_keyword)
|
| 197 |
keyword_length = len(keyword_tokens)
|
| 198 |
|
| 199 |
+
# Calculate final chunk boundaries in tokens
|
| 200 |
tokens_each_side = (chunk_size - keyword_length) // 2
|
|
|
|
|
|
|
| 201 |
chunk_start = max(0, keyword_start_pos - tokens_each_side)
|
| 202 |
+
chunk_end = min(len(chunk_tokens), keyword_start_pos + keyword_length + tokens_each_side)
|
| 203 |
|
| 204 |
# Add overlap if possible
|
| 205 |
if chunk_start > 0:
|
| 206 |
chunk_start = max(0, chunk_start - self.chunk_overlap)
|
| 207 |
+
if chunk_end < len(chunk_tokens):
|
| 208 |
+
chunk_end = min(len(chunk_tokens), chunk_end + self.chunk_overlap)
|
| 209 |
|
| 210 |
+
# Extract final tokens and convert to text
|
| 211 |
+
final_tokens = chunk_tokens[chunk_start:chunk_end]
|
| 212 |
+
chunk_text = self.tokenizer.convert_tokens_to_string(final_tokens)
|
| 213 |
|
| 214 |
+
# Verify keyword presence in final chunk
|
| 215 |
if chunk_text and actual_keyword in chunk_text:
|
| 216 |
chunk_info = {
|
| 217 |
"text": chunk_text,
|
| 218 |
"primary_keyword": actual_keyword,
|
| 219 |
"all_matched_keywords": matched_keywords.lower(),
|
| 220 |
+
"token_count": len(final_tokens),
|
|
|
|
|
|
|
|
|
|
| 221 |
"chunk_id": f"{doc_id}_chunk_{i}" if doc_id else f"chunk_{i}",
|
| 222 |
"source_doc_id": doc_id
|
| 223 |
}
|
| 224 |
chunks.append(chunk_info)
|
|
|
|
| 225 |
else:
|
| 226 |
+
logger.debug(f"Could not create chunk for keyword '{actual_keyword}' in doc {doc_id}")
|
| 227 |
+
|
| 228 |
+
if chunks:
|
| 229 |
+
logger.debug(f"Created {len(chunks)} chunks for document {doc_id or 'unknown'}")
|
| 230 |
|
| 231 |
return chunks
|
| 232 |
|
|
|
|
| 303 |
|
| 304 |
def process_emergency_chunks(self) -> List[Dict[str, Any]]:
|
| 305 |
"""Process emergency data into chunks"""
|
|
|
|
|
|
|
| 306 |
if self.emergency_data is None:
|
| 307 |
raise ValueError("Emergency data not loaded. Call load_filtered_data() first.")
|
| 308 |
|
| 309 |
all_chunks = []
|
| 310 |
|
| 311 |
+
# Add progress bar with leave=False to avoid cluttering
|
| 312 |
+
for idx, row in tqdm(self.emergency_data.iterrows(),
|
| 313 |
+
total=len(self.emergency_data),
|
| 314 |
+
desc="Processing emergency documents",
|
| 315 |
+
unit="doc",
|
| 316 |
+
leave=False):
|
| 317 |
if pd.notna(row.get('clean_text')) and pd.notna(row.get('matched')):
|
| 318 |
chunks = self.create_keyword_centered_chunks(
|
| 319 |
text=row['clean_text'],
|
|
|
|
| 335 |
all_chunks.extend(chunks)
|
| 336 |
|
| 337 |
self.emergency_chunks = all_chunks
|
| 338 |
+
logger.info(f"Completed processing emergency data: {len(all_chunks)} chunks generated")
|
| 339 |
return all_chunks
|
| 340 |
|
| 341 |
def process_treatment_chunks(self) -> List[Dict[str, Any]]:
|
| 342 |
"""Process treatment data into chunks"""
|
|
|
|
|
|
|
| 343 |
if self.treatment_data is None:
|
| 344 |
raise ValueError("Treatment data not loaded. Call load_filtered_data() first.")
|
| 345 |
|
| 346 |
all_chunks = []
|
| 347 |
|
| 348 |
+
# Add progress bar with leave=False to avoid cluttering
|
| 349 |
+
for idx, row in tqdm(self.treatment_data.iterrows(),
|
| 350 |
+
total=len(self.treatment_data),
|
| 351 |
+
desc="Processing treatment documents",
|
| 352 |
+
unit="doc",
|
| 353 |
+
leave=False):
|
| 354 |
if (pd.notna(row.get('clean_text')) and
|
| 355 |
pd.notna(row.get('treatment_matched'))):
|
| 356 |
|
|
|
|
| 376 |
all_chunks.extend(chunks)
|
| 377 |
|
| 378 |
self.treatment_chunks = all_chunks
|
| 379 |
+
logger.info(f"Completed processing treatment data: {len(all_chunks)} chunks generated")
|
| 380 |
return all_chunks
|
| 381 |
|
| 382 |
+
def _get_chunk_hash(self, text: str) -> str:
|
| 383 |
+
"""Generate hash for chunk text to use as cache key"""
|
| 384 |
+
import hashlib
|
| 385 |
+
return hashlib.md5(text.encode('utf-8')).hexdigest()
|
| 386 |
+
|
| 387 |
+
def _load_embedding_cache(self, cache_file: str) -> dict:
|
| 388 |
+
"""Load embedding cache from file"""
|
| 389 |
+
import pickle
|
| 390 |
+
import os
|
| 391 |
+
if os.path.exists(cache_file):
|
| 392 |
+
try:
|
| 393 |
+
with open(cache_file, 'rb') as f:
|
| 394 |
+
return pickle.load(f)
|
| 395 |
+
except:
|
| 396 |
+
logger.warning(f"Could not load cache file {cache_file}, starting fresh")
|
| 397 |
+
return {}
|
| 398 |
+
return {}
|
| 399 |
+
|
| 400 |
+
def _save_embedding_cache(self, cache: dict, cache_file: str):
|
| 401 |
+
"""Save embedding cache to file"""
|
| 402 |
+
import pickle
|
| 403 |
+
import os
|
| 404 |
+
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
|
| 405 |
+
with open(cache_file, 'wb') as f:
|
| 406 |
+
pickle.dump(cache, f)
|
| 407 |
+
|
| 408 |
def generate_embeddings(self, chunks: List[Dict[str, Any]],
|
| 409 |
chunk_type: str = "emergency") -> np.ndarray:
|
| 410 |
"""
|
| 411 |
+
Generate embeddings for chunks with caching support
|
| 412 |
|
| 413 |
Args:
|
| 414 |
chunks: List of chunk dictionaries
|
|
|
|
| 417 |
Returns:
|
| 418 |
numpy array of embeddings
|
| 419 |
"""
|
| 420 |
+
logger.info(f"Starting embedding generation for {len(chunks)} {chunk_type} chunks...")
|
| 421 |
+
|
| 422 |
+
# Cache setup
|
| 423 |
+
cache_dir = self.models_dir / "cache"
|
| 424 |
+
cache_dir.mkdir(parents=True, exist_ok=True)
|
| 425 |
+
cache_file = cache_dir / f"{chunk_type}_embeddings_cache.pkl"
|
| 426 |
+
|
| 427 |
+
# Load existing cache
|
| 428 |
+
cache = self._load_embedding_cache(str(cache_file))
|
| 429 |
+
|
| 430 |
+
cached_embeddings = []
|
| 431 |
+
to_embed = []
|
| 432 |
+
|
| 433 |
+
# Check cache for each chunk
|
| 434 |
+
for i, chunk in enumerate(chunks):
|
| 435 |
+
chunk_hash = self._get_chunk_hash(chunk['text'])
|
| 436 |
+
if chunk_hash in cache:
|
| 437 |
+
cached_embeddings.append((i, cache[chunk_hash]))
|
| 438 |
+
else:
|
| 439 |
+
to_embed.append((i, chunk_hash, chunk['text']))
|
| 440 |
+
|
| 441 |
+
logger.info(f"Cache status: {len(cached_embeddings)} cached, {len(to_embed)} new chunks to embed")
|
| 442 |
+
|
| 443 |
+
# Generate embeddings for new chunks
|
| 444 |
+
new_embeddings = []
|
| 445 |
+
if to_embed:
|
| 446 |
+
# Load model
|
| 447 |
+
model = self.load_embedding_model()
|
| 448 |
+
texts = [text for _, _, text in to_embed]
|
| 449 |
+
|
| 450 |
+
# Generate embeddings in batches with clear progress
|
| 451 |
+
batch_size = 32
|
| 452 |
+
total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 453 |
+
|
| 454 |
+
logger.info(f"Processing {len(texts)} new {chunk_type} texts in {total_batches} batches...")
|
| 455 |
+
|
| 456 |
+
for i in tqdm(range(0, len(texts), batch_size),
|
| 457 |
+
desc=f"Embedding {chunk_type} subset",
|
| 458 |
+
total=total_batches,
|
| 459 |
+
unit="batch",
|
| 460 |
+
leave=False):
|
| 461 |
+
batch_texts = texts[i:i + batch_size]
|
| 462 |
+
batch_emb = model.encode(
|
| 463 |
+
batch_texts,
|
| 464 |
+
show_progress_bar=False
|
| 465 |
+
)
|
| 466 |
+
new_embeddings.extend(batch_emb)
|
| 467 |
+
|
| 468 |
+
# Update cache with new embeddings
|
| 469 |
+
for (_, chunk_hash, _), emb in zip(to_embed, new_embeddings):
|
| 470 |
+
cache[chunk_hash] = emb
|
| 471 |
+
|
| 472 |
+
# Save updated cache
|
| 473 |
+
self._save_embedding_cache(cache, str(cache_file))
|
| 474 |
+
logger.info(f"Updated cache with {len(new_embeddings)} new embeddings")
|
| 475 |
|
| 476 |
+
# Combine cached and new embeddings in correct order
|
| 477 |
+
all_embeddings = [None] * len(chunks)
|
| 478 |
|
| 479 |
+
# Place cached embeddings
|
| 480 |
+
for idx, emb in cached_embeddings:
|
| 481 |
+
all_embeddings[idx] = emb
|
| 482 |
|
| 483 |
+
# Place new embeddings
|
| 484 |
+
for (idx, _, _), emb in zip(to_embed, new_embeddings):
|
| 485 |
+
all_embeddings[idx] = emb
|
|
|
|
| 486 |
|
| 487 |
+
# Convert to numpy array
|
| 488 |
+
result = np.vstack(all_embeddings)
|
| 489 |
+
logger.info(f"Completed embedding generation: shape {result.shape}")
|
| 490 |
|
| 491 |
+
return result
|
|
|
|
| 492 |
|
| 493 |
def build_annoy_index(self, embeddings: np.ndarray,
|
| 494 |
index_name: str, n_trees: int = 15) -> AnnoyIndex:
|
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from annoy import AnnoyIndex
|
| 3 |
+
import pytest
|
| 4 |
+
from data_processing import DataProcessor
|
| 5 |
+
|
| 6 |
+
@pytest.fixture(scope="module")
|
| 7 |
+
def processor():
|
| 8 |
+
return DataProcessor(base_dir=".")
|
| 9 |
+
|
| 10 |
+
def test_embedding_dimensions(processor):
|
| 11 |
+
# load emergency embeddings
|
| 12 |
+
emb = np.load(processor.models_dir / "embeddings" / "emergency_embeddings.npy")
|
| 13 |
+
expected_dim = processor.embedding_dim
|
| 14 |
+
assert emb.ndim == 2, f"Expected 2D array, got {emb.ndim}D"
|
| 15 |
+
assert emb.shape[1] == expected_dim, (
|
| 16 |
+
f"Expected embedding dimension {expected_dim}, got {emb.shape[1]}"
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def test_annoy_search(processor):
|
| 20 |
+
# load embeddings
|
| 21 |
+
emb = np.load(processor.models_dir / "embeddings" / "emergency_embeddings.npy")
|
| 22 |
+
# load Annoy index
|
| 23 |
+
idx = AnnoyIndex(processor.embedding_dim, 'angular')
|
| 24 |
+
idx.load(str(processor.models_dir / "indices" / "annoy" / "emergency_index.ann"))
|
| 25 |
+
# perform a sample query
|
| 26 |
+
query_vec = emb[0]
|
| 27 |
+
ids, distances = idx.get_nns_by_vector(query_vec, 5, include_distances=True)
|
| 28 |
+
assert len(ids) == 5
|
| 29 |
+
assert all(0 <= d <= 2 for d in distances)
|