Spaces:
Sleeping
Sleeping
YanBoChen
commited on
Commit
·
fa23be2
1
Parent(s):
4c919d2
feat(user_prompt): add keyword index checking and enhance medical query validation (add validate_medical_query() and _check_keyword_in_index(), based on implementation_todo_20250730_user_prompt.md
Browse files- src/user_prompt.py +153 -0
src/user_prompt.py
CHANGED
|
@@ -15,6 +15,9 @@ import logging
|
|
| 15 |
from typing import Dict, Optional, Any, List
|
| 16 |
from sentence_transformers import SentenceTransformer
|
| 17 |
import numpy as np # Added missing import for numpy
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Import our centralized medical conditions configuration
|
| 20 |
from medical_conditions import (
|
|
@@ -42,6 +45,10 @@ class UserPromptProcessor:
|
|
| 42 |
self.meditron_client = meditron_client
|
| 43 |
self.retrieval_system = retrieval_system
|
| 44 |
self.embedding_model = SentenceTransformer("NeuML/pubmedbert-base-embeddings")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
logger.info("UserPromptProcessor initialized")
|
| 46 |
|
| 47 |
def extract_condition_keywords(self, user_query: str) -> Dict[str, str]:
|
|
@@ -254,6 +261,72 @@ class UserPromptProcessor:
|
|
| 254 |
# Basic validation: check if any keyword is non-empty
|
| 255 |
return any(kw.strip() for kw in emergency_kws + treatment_kws)
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
def handle_user_confirmation(self, extracted_info: Dict[str, str]) -> Dict[str, Any]:
|
| 258 |
"""
|
| 259 |
Handle user confirmation for extracted condition and keywords
|
|
@@ -296,6 +369,86 @@ Please confirm:
|
|
| 296 |
'extracted_info': extracted_info
|
| 297 |
}
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
def main():
|
| 300 |
"""
|
| 301 |
Example usage and testing of UserPromptProcessor
|
|
|
|
| 15 |
from typing import Dict, Optional, Any, List
|
| 16 |
from sentence_transformers import SentenceTransformer
|
| 17 |
import numpy as np # Added missing import for numpy
|
| 18 |
+
import os # Added missing import for os
|
| 19 |
+
import json # Added missing import for json
|
| 20 |
+
import re # Added missing import for re
|
| 21 |
|
| 22 |
# Import our centralized medical conditions configuration
|
| 23 |
from medical_conditions import (
|
|
|
|
| 45 |
self.meditron_client = meditron_client
|
| 46 |
self.retrieval_system = retrieval_system
|
| 47 |
self.embedding_model = SentenceTransformer("NeuML/pubmedbert-base-embeddings")
|
| 48 |
+
|
| 49 |
+
# Add embeddings directory path
|
| 50 |
+
self.embeddings_dir = os.path.join(os.path.dirname(__file__), '..', 'models', 'embeddings')
|
| 51 |
+
|
| 52 |
logger.info("UserPromptProcessor initialized")
|
| 53 |
|
| 54 |
def extract_condition_keywords(self, user_query: str) -> Dict[str, str]:
|
|
|
|
| 261 |
# Basic validation: check if any keyword is non-empty
|
| 262 |
return any(kw.strip() for kw in emergency_kws + treatment_kws)
|
| 263 |
|
| 264 |
+
def _check_keyword_in_index(self, keyword: str, index_type: str) -> bool:
|
| 265 |
+
"""
|
| 266 |
+
Check if a keyword exists in the specified medical index
|
| 267 |
+
|
| 268 |
+
Args:
|
| 269 |
+
keyword: Keyword to check
|
| 270 |
+
index_type: Type of index ('emergency' or 'treatment')
|
| 271 |
+
|
| 272 |
+
Returns:
|
| 273 |
+
Boolean indicating keyword existence in the index
|
| 274 |
+
"""
|
| 275 |
+
# Validate input parameters
|
| 276 |
+
if not keyword or not index_type:
|
| 277 |
+
logger.warning(f"Invalid input: keyword='{keyword}', index_type='{index_type}'")
|
| 278 |
+
return False
|
| 279 |
+
|
| 280 |
+
# Supported index types
|
| 281 |
+
valid_index_types = ['emergency', 'treatment']
|
| 282 |
+
if index_type not in valid_index_types:
|
| 283 |
+
logger.error(f"Unsupported index type: {index_type}")
|
| 284 |
+
return False
|
| 285 |
+
|
| 286 |
+
try:
|
| 287 |
+
# Construct path to chunks file
|
| 288 |
+
chunks_path = os.path.join(self.embeddings_dir, f"{index_type}_chunks.json")
|
| 289 |
+
|
| 290 |
+
# Check file existence
|
| 291 |
+
if not os.path.exists(chunks_path):
|
| 292 |
+
logger.error(f"Index file not found: {chunks_path}")
|
| 293 |
+
return False
|
| 294 |
+
|
| 295 |
+
# Load chunks with error handling
|
| 296 |
+
with open(chunks_path, 'r', encoding='utf-8') as f:
|
| 297 |
+
chunks = json.load(f)
|
| 298 |
+
|
| 299 |
+
# Normalize keyword for flexible matching
|
| 300 |
+
keyword_lower = keyword.lower().strip()
|
| 301 |
+
|
| 302 |
+
# Advanced keyword matching
|
| 303 |
+
for chunk in chunks:
|
| 304 |
+
chunk_text = chunk.get('text', '').lower()
|
| 305 |
+
|
| 306 |
+
# Exact match
|
| 307 |
+
if keyword_lower in chunk_text:
|
| 308 |
+
logger.info(f"Exact match found for '{keyword}' in {index_type} index")
|
| 309 |
+
return True
|
| 310 |
+
|
| 311 |
+
# Partial match with word boundaries
|
| 312 |
+
if re.search(r'\b' + re.escape(keyword_lower) + r'\b', chunk_text):
|
| 313 |
+
logger.info(f"Partial match found for '{keyword}' in {index_type} index")
|
| 314 |
+
return True
|
| 315 |
+
|
| 316 |
+
# No match found
|
| 317 |
+
logger.info(f"No match found for '{keyword}' in {index_type} index")
|
| 318 |
+
return False
|
| 319 |
+
|
| 320 |
+
except json.JSONDecodeError:
|
| 321 |
+
logger.error(f"Invalid JSON in {chunks_path}")
|
| 322 |
+
return False
|
| 323 |
+
except IOError as e:
|
| 324 |
+
logger.error(f"IO error reading {chunks_path}: {e}")
|
| 325 |
+
return False
|
| 326 |
+
except Exception as e:
|
| 327 |
+
logger.error(f"Unexpected error in _check_keyword_in_index: {e}")
|
| 328 |
+
return False
|
| 329 |
+
|
| 330 |
def handle_user_confirmation(self, extracted_info: Dict[str, str]) -> Dict[str, Any]:
|
| 331 |
"""
|
| 332 |
Handle user confirmation for extracted condition and keywords
|
|
|
|
| 369 |
'extracted_info': extracted_info
|
| 370 |
}
|
| 371 |
|
| 372 |
+
def validate_medical_query(self, user_query: str) -> Dict[str, Any]:
|
| 373 |
+
"""
|
| 374 |
+
Validate if the query is a medical-related query using multi-layer verification
|
| 375 |
+
|
| 376 |
+
Args:
|
| 377 |
+
user_query: User's input query
|
| 378 |
+
|
| 379 |
+
Returns:
|
| 380 |
+
Dict with validation result or None if medical query
|
| 381 |
+
"""
|
| 382 |
+
# Expanded medical keywords covering comprehensive medical terminology
|
| 383 |
+
predefined_medical_keywords = {
|
| 384 |
+
# Symptoms and signs
|
| 385 |
+
'pain', 'symptom', 'ache', 'fever', 'inflammation',
|
| 386 |
+
'bleeding', 'swelling', 'rash', 'bruise', 'wound',
|
| 387 |
+
|
| 388 |
+
# Medical professional terms
|
| 389 |
+
'disease', 'condition', 'syndrome', 'disorder',
|
| 390 |
+
'medical', 'health', 'diagnosis', 'treatment',
|
| 391 |
+
'therapy', 'medication', 'prescription',
|
| 392 |
+
|
| 393 |
+
# Body systems and organs
|
| 394 |
+
'heart', 'lung', 'brain', 'kidney', 'liver',
|
| 395 |
+
'blood', 'nerve', 'muscle', 'bone', 'joint',
|
| 396 |
+
|
| 397 |
+
# Medical actions
|
| 398 |
+
'examine', 'check', 'test', 'scan', 'surgery',
|
| 399 |
+
'operation', 'emergency', 'urgent', 'critical',
|
| 400 |
+
|
| 401 |
+
# Specific medical fields
|
| 402 |
+
'cardiology', 'neurology', 'oncology', 'pediatrics',
|
| 403 |
+
'psychiatry', 'dermatology', 'orthopedics'
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
# Check if query contains predefined medical keywords
|
| 407 |
+
query_lower = user_query.lower()
|
| 408 |
+
if any(kw in query_lower for kw in predefined_medical_keywords):
|
| 409 |
+
return None # Validated by predefined keywords
|
| 410 |
+
|
| 411 |
+
# Step 2: Use Meditron for final determination
|
| 412 |
+
try:
|
| 413 |
+
# Ensure Meditron client is properly initialized
|
| 414 |
+
if not hasattr(self, 'meditron_client') or self.meditron_client is None:
|
| 415 |
+
self.logger.warning("Meditron client not initialized")
|
| 416 |
+
return self._generate_invalid_query_response()
|
| 417 |
+
|
| 418 |
+
meditron_result = self.meditron_client.analyze_medical_query(
|
| 419 |
+
query=user_query,
|
| 420 |
+
max_tokens=100 # Limit tokens for efficiency
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# If Meditron successfully extracts a medical condition
|
| 424 |
+
if meditron_result.get('extracted_condition'):
|
| 425 |
+
return None # Validated by Meditron
|
| 426 |
+
|
| 427 |
+
except Exception as e:
|
| 428 |
+
# Log Meditron analysis failure without blocking the process
|
| 429 |
+
self.logger.warning(f"Meditron query validation failed: {e}")
|
| 430 |
+
|
| 431 |
+
# If no medical relevance is found
|
| 432 |
+
return self._generate_invalid_query_response()
|
| 433 |
+
|
| 434 |
+
def _generate_invalid_query_response(self) -> Dict[str, Any]:
|
| 435 |
+
"""
|
| 436 |
+
Generate response for non-medical queries
|
| 437 |
+
|
| 438 |
+
Returns:
|
| 439 |
+
Dict with invalid query guidance
|
| 440 |
+
"""
|
| 441 |
+
return {
|
| 442 |
+
'type': 'invalid_query',
|
| 443 |
+
'message': "This is OnCall.AI, a clinical medical assistance platform. "
|
| 444 |
+
"Please input a medical problem you need help resolving. "
|
| 445 |
+
"\n\nExamples:\n"
|
| 446 |
+
"- 'I'm experiencing chest pain'\n"
|
| 447 |
+
"- 'What are symptoms of stroke?'\n"
|
| 448 |
+
"- 'How to manage acute asthma?'\n"
|
| 449 |
+
"- 'I have a persistent headache'"
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
def main():
|
| 453 |
"""
|
| 454 |
Example usage and testing of UserPromptProcessor
|