Spaces:
Sleeping
Sleeping
File size: 7,668 Bytes
f7892e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
"""Knowledge assistant for intelligent content queries."""
from typing import List, Dict, Any, Tuple
from rag_services import rag_service
class KnowledgeAssistant:
"""Provides intelligent assistance based on the knowledge base."""
def __init__(self):
self.commands = {
"!search": self.search_knowledge,
"!characters": self.list_characters,
"!stories": self.list_stories,
"!world": self.list_world_elements,
"!analyze": self.analyze_content,
"!suggest": self.suggest_related,
"!consistency": self.check_consistency,
"!rebuild": self.rebuild_index
}
def process_query(self, query: str) -> str:
"""Process user queries and provide intelligent responses."""
query = query.strip()
# Check for commands
if query.startswith("!"):
command_parts = query.split(" ", 1)
command = command_parts[0]
args = command_parts[1] if len(command_parts) > 1 else ""
if command in self.commands:
return self.commands[command](args)
else:
return f"Unknown command: {command}\nAvailable commands: {', '.join(self.commands.keys())}"
# Regular search query
return self.search_knowledge(query)
def search_knowledge(self, query: str) -> str:
"""Search across all knowledge base content."""
if not query.strip():
return "Please provide a search query."
results = rag_service.search(query, k=5)
if not results:
return f"No results found for: {query}"
response = f"π SEARCH RESULTS FOR: '{query}'\n\n"
for i, result in enumerate(results, 1):
metadata = result['metadata']
content_type = metadata.get('content_type', 'content')
title = metadata.get('title', 'Unknown')
content = result['content'][:200] + "..." if len(result['content']) > 200 else result['content']
score = result['score']
response += f"{i}. {content_type.title()}: {title} (Relevance: {score:.2f})\n"
response += f" {content}\n\n"
return response
def list_characters(self, query: str = "") -> str:
"""List characters in the knowledge base."""
results = rag_service.search(query if query else "character", k=10, content_type="character")
if not results:
return "No characters found in knowledge base."
response = "π₯ CHARACTERS IN KNOWLEDGE BASE:\n\n"
for result in results:
title = result['metadata'].get('title', 'Unknown')
content = result['content'][:150] + "..." if len(result['content']) > 150 else result['content']
response += f"β’ {title}\n {content}\n\n"
return response
def list_stories(self, query: str = "") -> str:
"""List stories in the knowledge base."""
results = rag_service.search(query if query else "story", k=10, content_type="story")
if not results:
return "No stories found in knowledge base."
response = "π STORIES IN KNOWLEDGE BASE:\n\n"
for result in results:
title = result['metadata'].get('title', 'Unknown')
content = result['content'][:150] + "..." if len(result['content']) > 150 else result['content']
response += f"β’ {title}\n {content}\n\n"
return response
def list_world_elements(self, query: str = "") -> str:
"""List world elements in the knowledge base."""
results = rag_service.search(query if query else "world", k=10, content_type="world_element")
if not results:
return "No world elements found in knowledge base."
response = "π WORLD ELEMENTS IN KNOWLEDGE BASE:\n\n"
for result in results:
title = result['metadata'].get('title', 'Unknown')
content = result['content'][:150] + "..." if len(result['content']) > 150 else result['content']
response += f"β’ {title}\n {content}\n\n"
return response
def analyze_content(self, content: str) -> str:
"""Analyze provided content against the knowledge base."""
if not content.strip():
return "Please provide content to analyze."
# Find related content
results = rag_service.search(content, k=5)
response = "π CONTENT ANALYSIS:\n\n"
if results:
response += "Related content found:\n"
for result in results:
metadata = result['metadata']
content_type = metadata.get('content_type', 'content')
title = metadata.get('title', 'Unknown')
score = result['score']
response += f"β’ {content_type.title()}: {title} (Similarity: {score:.2f})\n"
else:
response += "No related content found in knowledge base."
return response
def suggest_related(self, content: str) -> str:
"""Suggest related content based on input."""
if not content.strip():
return "Please provide content for suggestions."
# Get diverse suggestions
char_results = rag_service.search(content, k=2, content_type="character")
story_results = rag_service.search(content, k=2, content_type="story")
world_results = rag_service.search(content, k=2, content_type="world_element")
response = "π‘ SUGGESTIONS BASED ON YOUR CONTENT:\n\n"
if char_results:
response += "Relevant Characters:\n"
for result in char_results:
title = result['metadata'].get('title', 'Unknown')
response += f"β’ {title}\n"
response += "\n"
if story_results:
response += "Related Stories:\n"
for result in story_results:
title = result['metadata'].get('title', 'Unknown')
response += f"β’ {title}\n"
response += "\n"
if world_results:
response += "Relevant World Elements:\n"
for result in world_results:
title = result['metadata'].get('title', 'Unknown')
response += f"β’ {title}\n"
response += "\n"
if not any([char_results, story_results, world_results]):
response += "No related content found in knowledge base."
return response
def check_consistency(self, content: str) -> str:
"""Check content consistency against knowledge base."""
if not content.strip():
return "Please provide content to check for consistency."
from langchain_tools import context_enhancer
analysis = context_enhancer.analyze_character_consistency(content)
response = "β
CONSISTENCY CHECK:\n\n"
response += analysis
return response
def rebuild_index(self, args: str = "") -> str:
"""Rebuild the vector index from current data."""
try:
rag_service.rebuild_index_from_projects()
return "β
Knowledge base index rebuilt successfully!"
except Exception as e:
return f"β Error rebuilding index: {str(e)}"
# Global assistant instance
knowledge_assistant = KnowledgeAssistant()
|