File size: 7,668 Bytes
f7892e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

"""Knowledge assistant for intelligent content queries."""

from typing import List, Dict, Any, Tuple
from rag_services import rag_service


class KnowledgeAssistant:
    """Provides intelligent assistance based on the knowledge base."""
    
    def __init__(self):
        self.commands = {
            "!search": self.search_knowledge,
            "!characters": self.list_characters,
            "!stories": self.list_stories,
            "!world": self.list_world_elements,
            "!analyze": self.analyze_content,
            "!suggest": self.suggest_related,
            "!consistency": self.check_consistency,
            "!rebuild": self.rebuild_index
        }
    
    def process_query(self, query: str) -> str:
        """Process user queries and provide intelligent responses."""
        query = query.strip()
        
        # Check for commands
        if query.startswith("!"):
            command_parts = query.split(" ", 1)
            command = command_parts[0]
            args = command_parts[1] if len(command_parts) > 1 else ""
            
            if command in self.commands:
                return self.commands[command](args)
            else:
                return f"Unknown command: {command}\nAvailable commands: {', '.join(self.commands.keys())}"
        
        # Regular search query
        return self.search_knowledge(query)
    
    def search_knowledge(self, query: str) -> str:
        """Search across all knowledge base content."""
        if not query.strip():
            return "Please provide a search query."
        
        results = rag_service.search(query, k=5)
        
        if not results:
            return f"No results found for: {query}"
        
        response = f"πŸ” SEARCH RESULTS FOR: '{query}'\n\n"
        
        for i, result in enumerate(results, 1):
            metadata = result['metadata']
            content_type = metadata.get('content_type', 'content')
            title = metadata.get('title', 'Unknown')
            content = result['content'][:200] + "..." if len(result['content']) > 200 else result['content']
            score = result['score']
            
            response += f"{i}. {content_type.title()}: {title} (Relevance: {score:.2f})\n"
            response += f"   {content}\n\n"
        
        return response
    
    def list_characters(self, query: str = "") -> str:
        """List characters in the knowledge base."""
        results = rag_service.search(query if query else "character", k=10, content_type="character")
        
        if not results:
            return "No characters found in knowledge base."
        
        response = "πŸ‘₯ CHARACTERS IN KNOWLEDGE BASE:\n\n"
        for result in results:
            title = result['metadata'].get('title', 'Unknown')
            content = result['content'][:150] + "..." if len(result['content']) > 150 else result['content']
            response += f"β€’ {title}\n  {content}\n\n"
        
        return response
    
    def list_stories(self, query: str = "") -> str:
        """List stories in the knowledge base."""
        results = rag_service.search(query if query else "story", k=10, content_type="story")
        
        if not results:
            return "No stories found in knowledge base."
        
        response = "πŸ“š STORIES IN KNOWLEDGE BASE:\n\n"
        for result in results:
            title = result['metadata'].get('title', 'Unknown')
            content = result['content'][:150] + "..." if len(result['content']) > 150 else result['content']
            response += f"β€’ {title}\n  {content}\n\n"
        
        return response
    
    def list_world_elements(self, query: str = "") -> str:
        """List world elements in the knowledge base."""
        results = rag_service.search(query if query else "world", k=10, content_type="world_element")
        
        if not results:
            return "No world elements found in knowledge base."
        
        response = "🌍 WORLD ELEMENTS IN KNOWLEDGE BASE:\n\n"
        for result in results:
            title = result['metadata'].get('title', 'Unknown')
            content = result['content'][:150] + "..." if len(result['content']) > 150 else result['content']
            response += f"β€’ {title}\n  {content}\n\n"
        
        return response
    
    def analyze_content(self, content: str) -> str:
        """Analyze provided content against the knowledge base."""
        if not content.strip():
            return "Please provide content to analyze."
        
        # Find related content
        results = rag_service.search(content, k=5)
        
        response = "πŸ“Š CONTENT ANALYSIS:\n\n"
        
        if results:
            response += "Related content found:\n"
            for result in results:
                metadata = result['metadata']
                content_type = metadata.get('content_type', 'content')
                title = metadata.get('title', 'Unknown')
                score = result['score']
                response += f"β€’ {content_type.title()}: {title} (Similarity: {score:.2f})\n"
        else:
            response += "No related content found in knowledge base."
        
        return response
    
    def suggest_related(self, content: str) -> str:
        """Suggest related content based on input."""
        if not content.strip():
            return "Please provide content for suggestions."
        
        # Get diverse suggestions
        char_results = rag_service.search(content, k=2, content_type="character")
        story_results = rag_service.search(content, k=2, content_type="story")
        world_results = rag_service.search(content, k=2, content_type="world_element")
        
        response = "πŸ’‘ SUGGESTIONS BASED ON YOUR CONTENT:\n\n"
        
        if char_results:
            response += "Relevant Characters:\n"
            for result in char_results:
                title = result['metadata'].get('title', 'Unknown')
                response += f"β€’ {title}\n"
            response += "\n"
        
        if story_results:
            response += "Related Stories:\n"
            for result in story_results:
                title = result['metadata'].get('title', 'Unknown')
                response += f"β€’ {title}\n"
            response += "\n"
        
        if world_results:
            response += "Relevant World Elements:\n"
            for result in world_results:
                title = result['metadata'].get('title', 'Unknown')
                response += f"β€’ {title}\n"
            response += "\n"
        
        if not any([char_results, story_results, world_results]):
            response += "No related content found in knowledge base."
        
        return response
    
    def check_consistency(self, content: str) -> str:
        """Check content consistency against knowledge base."""
        if not content.strip():
            return "Please provide content to check for consistency."
        
        from langchain_tools import context_enhancer
        analysis = context_enhancer.analyze_character_consistency(content)
        
        response = "βœ… CONSISTENCY CHECK:\n\n"
        response += analysis
        
        return response
    
    def rebuild_index(self, args: str = "") -> str:
        """Rebuild the vector index from current data."""
        try:
            rag_service.rebuild_index_from_projects()
            return "βœ… Knowledge base index rebuilt successfully!"
        except Exception as e:
            return f"❌ Error rebuilding index: {str(e)}"


# Global assistant instance
knowledge_assistant = KnowledgeAssistant()