Spaces:
Runtime error
Runtime error
Upload video_dataset.py
Browse files- BLIP/data/video_dataset.py +110 -0
BLIP/data/video_dataset.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch.utils.data import Dataset
|
| 2 |
+
from torchvision.datasets.utils import download_url
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import random
|
| 8 |
+
import decord
|
| 9 |
+
from decord import VideoReader
|
| 10 |
+
import json
|
| 11 |
+
import os
|
| 12 |
+
from data.utils import pre_caption
|
| 13 |
+
|
| 14 |
+
decord.bridge.set_bridge("torch")
|
| 15 |
+
|
| 16 |
+
class ImageNorm(object):
|
| 17 |
+
"""Apply Normalization to Image Pixels on GPU
|
| 18 |
+
"""
|
| 19 |
+
def __init__(self, mean, std):
|
| 20 |
+
self.mean = torch.tensor(mean).view(1, 3, 1, 1)
|
| 21 |
+
self.std = torch.tensor(std).view(1, 3, 1, 1)
|
| 22 |
+
|
| 23 |
+
def __call__(self, img):
|
| 24 |
+
|
| 25 |
+
if torch.max(img) > 1 and self.mean.max() <= 1:
|
| 26 |
+
img.div_(255.)
|
| 27 |
+
return img.sub_(self.mean).div_(self.std)
|
| 28 |
+
|
| 29 |
+
def load_jsonl(filename):
|
| 30 |
+
with open(filename, "r") as f:
|
| 31 |
+
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class VideoDataset(Dataset):
|
| 35 |
+
|
| 36 |
+
def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'):
|
| 37 |
+
'''
|
| 38 |
+
image_root (string): Root directory of video
|
| 39 |
+
ann_root (string): directory to store the annotation file
|
| 40 |
+
'''
|
| 41 |
+
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl'
|
| 42 |
+
filename = 'msrvtt_test.jsonl'
|
| 43 |
+
|
| 44 |
+
download_url(url,ann_root)
|
| 45 |
+
self.annotation = load_jsonl(os.path.join(ann_root,filename))
|
| 46 |
+
|
| 47 |
+
self.num_frm = num_frm
|
| 48 |
+
self.frm_sampling_strategy = frm_sampling_strategy
|
| 49 |
+
self.max_img_size = max_img_size
|
| 50 |
+
self.video_root = video_root
|
| 51 |
+
self.video_fmt = video_fmt
|
| 52 |
+
self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
| 53 |
+
|
| 54 |
+
self.text = [pre_caption(ann['caption'],40) for ann in self.annotation]
|
| 55 |
+
self.txt2video = [i for i in range(len(self.annotation))]
|
| 56 |
+
self.video2txt = self.txt2video
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def __len__(self):
|
| 60 |
+
return len(self.annotation)
|
| 61 |
+
|
| 62 |
+
def __getitem__(self, index):
|
| 63 |
+
|
| 64 |
+
ann = self.annotation[index]
|
| 65 |
+
|
| 66 |
+
video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt)
|
| 67 |
+
|
| 68 |
+
vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size)
|
| 69 |
+
|
| 70 |
+
video = self.img_norm(vid_frm_array.float())
|
| 71 |
+
|
| 72 |
+
return video, ann['clip_name']
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1):
|
| 77 |
+
try:
|
| 78 |
+
if not height or not width:
|
| 79 |
+
vr = VideoReader(video_path)
|
| 80 |
+
else:
|
| 81 |
+
vr = VideoReader(video_path, width=width, height=height)
|
| 82 |
+
|
| 83 |
+
vlen = len(vr)
|
| 84 |
+
|
| 85 |
+
if start_time or end_time:
|
| 86 |
+
assert fps > 0, 'must provide video fps if specifying start and end time.'
|
| 87 |
+
|
| 88 |
+
start_idx = min(int(start_time * fps), vlen)
|
| 89 |
+
end_idx = min(int(end_time * fps), vlen)
|
| 90 |
+
else:
|
| 91 |
+
start_idx, end_idx = 0, vlen
|
| 92 |
+
|
| 93 |
+
if self.frm_sampling_strategy == 'uniform':
|
| 94 |
+
frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int)
|
| 95 |
+
elif self.frm_sampling_strategy == 'rand':
|
| 96 |
+
frame_indices = sorted(random.sample(range(vlen), self.num_frm))
|
| 97 |
+
elif self.frm_sampling_strategy == 'headtail':
|
| 98 |
+
frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2))
|
| 99 |
+
frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2))
|
| 100 |
+
frame_indices = frame_indices_head + frame_indices_tail
|
| 101 |
+
else:
|
| 102 |
+
raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy))
|
| 103 |
+
|
| 104 |
+
raw_sample_frms = vr.get_batch(frame_indices)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
return None
|
| 107 |
+
|
| 108 |
+
raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2)
|
| 109 |
+
|
| 110 |
+
return raw_sample_frms
|