Spaces:
Runtime error
Runtime error
Upload utils.py
Browse files- BLIP/utils.py +278 -0
BLIP/utils.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
|
| 3 |
+
"""Decay the learning rate"""
|
| 4 |
+
lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
|
| 5 |
+
for param_group in optimizer.param_groups:
|
| 6 |
+
param_group['lr'] = lr
|
| 7 |
+
|
| 8 |
+
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
|
| 9 |
+
"""Warmup the learning rate"""
|
| 10 |
+
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
|
| 11 |
+
for param_group in optimizer.param_groups:
|
| 12 |
+
param_group['lr'] = lr
|
| 13 |
+
|
| 14 |
+
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
|
| 15 |
+
"""Decay the learning rate"""
|
| 16 |
+
lr = max(min_lr, init_lr * (decay_rate**epoch))
|
| 17 |
+
for param_group in optimizer.param_groups:
|
| 18 |
+
param_group['lr'] = lr
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import io
|
| 22 |
+
import os
|
| 23 |
+
import time
|
| 24 |
+
from collections import defaultdict, deque
|
| 25 |
+
import datetime
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
import torch.distributed as dist
|
| 29 |
+
|
| 30 |
+
class SmoothedValue(object):
|
| 31 |
+
"""Track a series of values and provide access to smoothed values over a
|
| 32 |
+
window or the global series average.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, window_size=20, fmt=None):
|
| 36 |
+
if fmt is None:
|
| 37 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
| 38 |
+
self.deque = deque(maxlen=window_size)
|
| 39 |
+
self.total = 0.0
|
| 40 |
+
self.count = 0
|
| 41 |
+
self.fmt = fmt
|
| 42 |
+
|
| 43 |
+
def update(self, value, n=1):
|
| 44 |
+
self.deque.append(value)
|
| 45 |
+
self.count += n
|
| 46 |
+
self.total += value * n
|
| 47 |
+
|
| 48 |
+
def synchronize_between_processes(self):
|
| 49 |
+
"""
|
| 50 |
+
Warning: does not synchronize the deque!
|
| 51 |
+
"""
|
| 52 |
+
if not is_dist_avail_and_initialized():
|
| 53 |
+
return
|
| 54 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
| 55 |
+
dist.barrier()
|
| 56 |
+
dist.all_reduce(t)
|
| 57 |
+
t = t.tolist()
|
| 58 |
+
self.count = int(t[0])
|
| 59 |
+
self.total = t[1]
|
| 60 |
+
|
| 61 |
+
@property
|
| 62 |
+
def median(self):
|
| 63 |
+
d = torch.tensor(list(self.deque))
|
| 64 |
+
return d.median().item()
|
| 65 |
+
|
| 66 |
+
@property
|
| 67 |
+
def avg(self):
|
| 68 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
| 69 |
+
return d.mean().item()
|
| 70 |
+
|
| 71 |
+
@property
|
| 72 |
+
def global_avg(self):
|
| 73 |
+
return self.total / self.count
|
| 74 |
+
|
| 75 |
+
@property
|
| 76 |
+
def max(self):
|
| 77 |
+
return max(self.deque)
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def value(self):
|
| 81 |
+
return self.deque[-1]
|
| 82 |
+
|
| 83 |
+
def __str__(self):
|
| 84 |
+
return self.fmt.format(
|
| 85 |
+
median=self.median,
|
| 86 |
+
avg=self.avg,
|
| 87 |
+
global_avg=self.global_avg,
|
| 88 |
+
max=self.max,
|
| 89 |
+
value=self.value)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class MetricLogger(object):
|
| 93 |
+
def __init__(self, delimiter="\t"):
|
| 94 |
+
self.meters = defaultdict(SmoothedValue)
|
| 95 |
+
self.delimiter = delimiter
|
| 96 |
+
|
| 97 |
+
def update(self, **kwargs):
|
| 98 |
+
for k, v in kwargs.items():
|
| 99 |
+
if isinstance(v, torch.Tensor):
|
| 100 |
+
v = v.item()
|
| 101 |
+
assert isinstance(v, (float, int))
|
| 102 |
+
self.meters[k].update(v)
|
| 103 |
+
|
| 104 |
+
def __getattr__(self, attr):
|
| 105 |
+
if attr in self.meters:
|
| 106 |
+
return self.meters[attr]
|
| 107 |
+
if attr in self.__dict__:
|
| 108 |
+
return self.__dict__[attr]
|
| 109 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
| 110 |
+
type(self).__name__, attr))
|
| 111 |
+
|
| 112 |
+
def __str__(self):
|
| 113 |
+
loss_str = []
|
| 114 |
+
for name, meter in self.meters.items():
|
| 115 |
+
loss_str.append(
|
| 116 |
+
"{}: {}".format(name, str(meter))
|
| 117 |
+
)
|
| 118 |
+
return self.delimiter.join(loss_str)
|
| 119 |
+
|
| 120 |
+
def global_avg(self):
|
| 121 |
+
loss_str = []
|
| 122 |
+
for name, meter in self.meters.items():
|
| 123 |
+
loss_str.append(
|
| 124 |
+
"{}: {:.4f}".format(name, meter.global_avg)
|
| 125 |
+
)
|
| 126 |
+
return self.delimiter.join(loss_str)
|
| 127 |
+
|
| 128 |
+
def synchronize_between_processes(self):
|
| 129 |
+
for meter in self.meters.values():
|
| 130 |
+
meter.synchronize_between_processes()
|
| 131 |
+
|
| 132 |
+
def add_meter(self, name, meter):
|
| 133 |
+
self.meters[name] = meter
|
| 134 |
+
|
| 135 |
+
def log_every(self, iterable, print_freq, header=None):
|
| 136 |
+
i = 0
|
| 137 |
+
if not header:
|
| 138 |
+
header = ''
|
| 139 |
+
start_time = time.time()
|
| 140 |
+
end = time.time()
|
| 141 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
| 142 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
| 143 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
| 144 |
+
log_msg = [
|
| 145 |
+
header,
|
| 146 |
+
'[{0' + space_fmt + '}/{1}]',
|
| 147 |
+
'eta: {eta}',
|
| 148 |
+
'{meters}',
|
| 149 |
+
'time: {time}',
|
| 150 |
+
'data: {data}'
|
| 151 |
+
]
|
| 152 |
+
if torch.cuda.is_available():
|
| 153 |
+
log_msg.append('max mem: {memory:.0f}')
|
| 154 |
+
log_msg = self.delimiter.join(log_msg)
|
| 155 |
+
MB = 1024.0 * 1024.0
|
| 156 |
+
for obj in iterable:
|
| 157 |
+
data_time.update(time.time() - end)
|
| 158 |
+
yield obj
|
| 159 |
+
iter_time.update(time.time() - end)
|
| 160 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
| 161 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
| 162 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
| 163 |
+
if torch.cuda.is_available():
|
| 164 |
+
print(log_msg.format(
|
| 165 |
+
i, len(iterable), eta=eta_string,
|
| 166 |
+
meters=str(self),
|
| 167 |
+
time=str(iter_time), data=str(data_time),
|
| 168 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
| 169 |
+
else:
|
| 170 |
+
print(log_msg.format(
|
| 171 |
+
i, len(iterable), eta=eta_string,
|
| 172 |
+
meters=str(self),
|
| 173 |
+
time=str(iter_time), data=str(data_time)))
|
| 174 |
+
i += 1
|
| 175 |
+
end = time.time()
|
| 176 |
+
total_time = time.time() - start_time
|
| 177 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 178 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
| 179 |
+
header, total_time_str, total_time / len(iterable)))
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class AttrDict(dict):
|
| 183 |
+
def __init__(self, *args, **kwargs):
|
| 184 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
| 185 |
+
self.__dict__ = self
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def compute_acc(logits, label, reduction='mean'):
|
| 189 |
+
ret = (torch.argmax(logits, dim=1) == label).float()
|
| 190 |
+
if reduction == 'none':
|
| 191 |
+
return ret.detach()
|
| 192 |
+
elif reduction == 'mean':
|
| 193 |
+
return ret.mean().item()
|
| 194 |
+
|
| 195 |
+
def compute_n_params(model, return_str=True):
|
| 196 |
+
tot = 0
|
| 197 |
+
for p in model.parameters():
|
| 198 |
+
w = 1
|
| 199 |
+
for x in p.shape:
|
| 200 |
+
w *= x
|
| 201 |
+
tot += w
|
| 202 |
+
if return_str:
|
| 203 |
+
if tot >= 1e6:
|
| 204 |
+
return '{:.1f}M'.format(tot / 1e6)
|
| 205 |
+
else:
|
| 206 |
+
return '{:.1f}K'.format(tot / 1e3)
|
| 207 |
+
else:
|
| 208 |
+
return tot
|
| 209 |
+
|
| 210 |
+
def setup_for_distributed(is_master):
|
| 211 |
+
"""
|
| 212 |
+
This function disables printing when not in master process
|
| 213 |
+
"""
|
| 214 |
+
import builtins as __builtin__
|
| 215 |
+
builtin_print = __builtin__.print
|
| 216 |
+
|
| 217 |
+
def print(*args, **kwargs):
|
| 218 |
+
force = kwargs.pop('force', False)
|
| 219 |
+
if is_master or force:
|
| 220 |
+
builtin_print(*args, **kwargs)
|
| 221 |
+
|
| 222 |
+
__builtin__.print = print
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def is_dist_avail_and_initialized():
|
| 226 |
+
if not dist.is_available():
|
| 227 |
+
return False
|
| 228 |
+
if not dist.is_initialized():
|
| 229 |
+
return False
|
| 230 |
+
return True
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def get_world_size():
|
| 234 |
+
if not is_dist_avail_and_initialized():
|
| 235 |
+
return 1
|
| 236 |
+
return dist.get_world_size()
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def get_rank():
|
| 240 |
+
if not is_dist_avail_and_initialized():
|
| 241 |
+
return 0
|
| 242 |
+
return dist.get_rank()
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def is_main_process():
|
| 246 |
+
return get_rank() == 0
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def save_on_master(*args, **kwargs):
|
| 250 |
+
if is_main_process():
|
| 251 |
+
torch.save(*args, **kwargs)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def init_distributed_mode(args):
|
| 255 |
+
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
| 256 |
+
args.rank = int(os.environ["RANK"])
|
| 257 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
| 258 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
| 259 |
+
elif 'SLURM_PROCID' in os.environ:
|
| 260 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
| 261 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
| 262 |
+
else:
|
| 263 |
+
print('Not using distributed mode')
|
| 264 |
+
args.distributed = False
|
| 265 |
+
return
|
| 266 |
+
|
| 267 |
+
args.distributed = True
|
| 268 |
+
|
| 269 |
+
torch.cuda.set_device(args.gpu)
|
| 270 |
+
args.dist_backend = 'nccl'
|
| 271 |
+
print('| distributed init (rank {}, word {}): {}'.format(
|
| 272 |
+
args.rank, args.world_size, args.dist_url), flush=True)
|
| 273 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
| 274 |
+
world_size=args.world_size, rank=args.rank)
|
| 275 |
+
torch.distributed.barrier()
|
| 276 |
+
setup_for_distributed(args.rank == 0)
|
| 277 |
+
|
| 278 |
+
|