Spaces:
Configuration error
Configuration error
| import argparse | |
| import torch | |
| from torchvision.transforms import ToPILImage | |
| from PIL import Image | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of MoMA.") | |
| parser.add_argument("--load_attn_adapters",type=str,default="checkpoints/attn_adapters_projectors.th",help="self_cross attentions and LLM projectors.") | |
| parser.add_argument("--output_path",type=str,default="output",help="output directory.") | |
| parser.add_argument("--model_path",type=str,default="KunpengSong/MoMA_llava_7b",help="fine tuned llava (Multi-modal LLM decoder)") | |
| args = parser.parse_known_args()[0] | |
| args.device = torch.device("cuda", 0) | |
| args.load_8bit, args.load_4bit = False, True | |
| return args | |
| def show_PIL_image(tensor): | |
| # tensor of shape [3, 3, 512, 512] | |
| to_pil = ToPILImage() | |
| images = [to_pil(tensor[i]) for i in range(tensor.shape[0])] | |
| concatenated_image = Image.new('RGB', (images[0].width * 3, images[0].height)) | |
| x_offset = 0 | |
| for img in images: | |
| concatenated_image.paste(img, (x_offset, 0)) | |
| x_offset += img.width | |
| return concatenated_image |