Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -260,10 +260,6 @@ def sat_jitter(x):
|
|
| 260 |
return tf.cast(x_f32, x.dtype)
|
| 261 |
|
| 262 |
def build_efficientnetb0_model():
|
| 263 |
-
"""
|
| 264 |
-
Same architecture as EfficientNetB0 training script
|
| 265 |
-
(without the mixed precision policy setup, which belongs in training code).
|
| 266 |
-
"""
|
| 267 |
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
|
| 268 |
|
| 269 |
data_augmentation = keras.Sequential(
|
|
@@ -286,10 +282,10 @@ def build_efficientnetb0_model():
|
|
| 286 |
name="effnet_preprocess",
|
| 287 |
)(x)
|
| 288 |
|
|
|
|
| 289 |
base_model = EfficientNetB0(
|
| 290 |
include_top=False,
|
| 291 |
-
weights="imagenet"
|
| 292 |
-
name="efficientnetb0",
|
| 293 |
)
|
| 294 |
|
| 295 |
x = base_model(x, training=False)
|
|
|
|
| 260 |
return tf.cast(x_f32, x.dtype)
|
| 261 |
|
| 262 |
def build_efficientnetb0_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
inputs = keras.Input(shape=(*IMG_SIZE, 3), name="input_layer")
|
| 264 |
|
| 265 |
data_augmentation = keras.Sequential(
|
|
|
|
| 282 |
name="effnet_preprocess",
|
| 283 |
)(x)
|
| 284 |
|
| 285 |
+
# ✅ FIXED: No 'name' argument
|
| 286 |
base_model = EfficientNetB0(
|
| 287 |
include_top=False,
|
| 288 |
+
weights="imagenet"
|
|
|
|
| 289 |
)
|
| 290 |
|
| 291 |
x = base_model(x, training=False)
|