yogesh-venkat commited on
Commit
ea0fc1d
Β·
verified Β·
1 Parent(s): b64947d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -597,7 +597,7 @@ of **25 COCO classes**. It brings together:
597
  cols = st.columns(min(3, len(imgs)))
598
  for i, img_path in enumerate(imgs[:3]):
599
  with cols[i]:
600
- st.image(img_path, caption=os.path.basename(img_path), width='stretch')
601
  else:
602
  st.info("No sample images found in `inference_outputs/` yet.")
603
  else:
@@ -620,7 +620,7 @@ The app will run **all 4 CNN models** and show **top-5 predictions** per model.
620
 
621
  if uploaded_file is not None:
622
  pil_img = read_image_file(uploaded_file)
623
- st.image(pil_img, caption="Uploaded image", width='stretch')
624
 
625
  with st.spinner("Loading classification models..."):
626
  cls_models = load_classification_models()
@@ -676,7 +676,7 @@ YOLOv8 will detect all objects and optionally verify them with the best classifi
676
  pil_img = read_image_file(uploaded_file)
677
 
678
  # ❌ REMOVE THIS (caused duplicate)
679
- # st.image(pil_img, caption="Uploaded image", width='stretch')
680
 
681
  with st.spinner("Loading YOLO model..."):
682
  yolo_model = load_yolo_model()
@@ -709,10 +709,10 @@ YOLOv8 will detect all objects and optionally verify them with the best classifi
709
  col1, col2 = st.columns(2)
710
 
711
  with col1:
712
- st.image(pil_img, caption="Uploaded Image", width='stretch')
713
 
714
  with col2:
715
- st.image(result["annotated_image"], caption="Detected Result", width='stretch')
716
 
717
  st.write(f"YOLO inference time: {result['yolo_inference_time_sec']*1000:.1f} ms")
718
  st.write(f"Number of detections: {len(result['detections'])}")
@@ -729,7 +729,7 @@ YOLOv8 will detect all objects and optionally verify them with the best classifi
729
  }
730
  for det in result["detections"]
731
  ])
732
- st.dataframe(df_det, width='stretch')
733
 
734
  # ------------------------------------------------------------
735
  # PAGE 4 – MODEL PERFORMANCE
@@ -743,24 +743,24 @@ elif page == "πŸ“Š Model Performance":
743
  if df_cls.empty:
744
  st.info("No classification metrics found yet in `smartvision_metrics/`.")
745
  else:
746
- st.dataframe(df_cls, width='stretch')
747
 
748
  col1, col2 = st.columns(2)
749
  with col1:
750
  st.bar_chart(
751
  df_cls.set_index("Model")["Accuracy"],
752
- width='stretch',
753
  )
754
  with col2:
755
  st.bar_chart(
756
  df_cls.set_index("Model")["F1 (weighted)"],
757
- width='stretch',
758
  )
759
 
760
  st.markdown("#### Inference Speed (images/sec)")
761
  st.bar_chart(
762
  df_cls.set_index("Model")["Images/sec"],
763
- width='stretch',
764
  )
765
 
766
  # --- YOLO metrics ---
@@ -791,7 +791,7 @@ elif page == "πŸ“Š Model Performance":
791
  ]
792
  if imgs:
793
  for img in sorted(imgs):
794
- st.image(img, caption=os.path.basename(img), width='stretch')
795
  else:
796
  st.info("No comparison plots found in `smartvision_metrics/comparison_plots/`.")
797
  else:
@@ -831,7 +831,7 @@ from your webcam and run YOLOv8 detection on it.
831
  conf_threshold=conf_th,
832
  )
833
 
834
- st.image(result["annotated_image"], caption="Detections", width='stretch')
835
  st.write(f"YOLO inference time: {result['yolo_inference_time_sec']*1000:.1f} ms")
836
  st.write(f"Number of detections: {len(result['detections'])}")
837
 
 
597
  cols = st.columns(min(3, len(imgs)))
598
  for i, img_path in enumerate(imgs[:3]):
599
  with cols[i]:
600
+ st.image(img_path, caption=os.path.basename(img_path), width=520)
601
  else:
602
  st.info("No sample images found in `inference_outputs/` yet.")
603
  else:
 
620
 
621
  if uploaded_file is not None:
622
  pil_img = read_image_file(uploaded_file)
623
+ st.image(pil_img, caption="Uploaded image", width=520)
624
 
625
  with st.spinner("Loading classification models..."):
626
  cls_models = load_classification_models()
 
676
  pil_img = read_image_file(uploaded_file)
677
 
678
  # ❌ REMOVE THIS (caused duplicate)
679
+ # st.image(pil_img, caption="Uploaded image", width=520)
680
 
681
  with st.spinner("Loading YOLO model..."):
682
  yolo_model = load_yolo_model()
 
709
  col1, col2 = st.columns(2)
710
 
711
  with col1:
712
+ st.image(pil_img, caption="Uploaded Image", width=520)
713
 
714
  with col2:
715
+ st.image(result["annotated_image"], caption="Detected Result", width=520)
716
 
717
  st.write(f"YOLO inference time: {result['yolo_inference_time_sec']*1000:.1f} ms")
718
  st.write(f"Number of detections: {len(result['detections'])}")
 
729
  }
730
  for det in result["detections"]
731
  ])
732
+ st.dataframe(df_det, width=520)
733
 
734
  # ------------------------------------------------------------
735
  # PAGE 4 – MODEL PERFORMANCE
 
743
  if df_cls.empty:
744
  st.info("No classification metrics found yet in `smartvision_metrics/`.")
745
  else:
746
+ st.dataframe(df_cls, width=520)
747
 
748
  col1, col2 = st.columns(2)
749
  with col1:
750
  st.bar_chart(
751
  df_cls.set_index("Model")["Accuracy"],
752
+ width=520,
753
  )
754
  with col2:
755
  st.bar_chart(
756
  df_cls.set_index("Model")["F1 (weighted)"],
757
+ width=520,
758
  )
759
 
760
  st.markdown("#### Inference Speed (images/sec)")
761
  st.bar_chart(
762
  df_cls.set_index("Model")["Images/sec"],
763
+ width=520,
764
  )
765
 
766
  # --- YOLO metrics ---
 
791
  ]
792
  if imgs:
793
  for img in sorted(imgs):
794
+ st.image(img, caption=os.path.basename(img), width=520)
795
  else:
796
  st.info("No comparison plots found in `smartvision_metrics/comparison_plots/`.")
797
  else:
 
831
  conf_threshold=conf_th,
832
  )
833
 
834
+ st.image(result["annotated_image"], caption="Detections", width=520)
835
  st.write(f"YOLO inference time: {result['yolo_inference_time_sec']*1000:.1f} ms")
836
  st.write(f"Number of detections: {len(result['detections'])}")
837