# ============================================================ # SMARTVISION DATASET BUILDER – FIXED VERSION # - Streams COCO # - Selects 25 classes # - Builds train/val/test for YOLO # - Uses correct image width/height for normalization # ============================================================ import os import json import random from tqdm import tqdm from datasets import load_dataset from PIL import Image # ------------------------------------------------------------ # CONFIG # ------------------------------------------------------------ BASE_DIR = "smartvision_dataset" IMAGES_PER_CLASS = 100 # you can increase if needed TARGET_CLASSES = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "truck", "traffic light", "stop sign", "bench", "bird", "cat", "dog", "horse", "cow", "elephant", "bottle", "cup", "bowl", "pizza", "cake", "chair", "couch", "bed", "potted plant" ] # COCO full classes (80) COCO_CLASSES = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ] COCO_NAME_TO_INDEX = {name: i for i, name in enumerate(COCO_CLASSES)} SELECTED = {name: COCO_NAME_TO_INDEX[name] for name in TARGET_CLASSES} os.makedirs(BASE_DIR, exist_ok=True) # ------------------------------------------------------------ # STEP 1 — STREAM COCO & COLLECT IMAGES # ------------------------------------------------------------ print("šŸ“„ Loading COCO dataset (streaming mode)...") dataset = load_dataset("detection-datasets/coco", split="train", streaming=True) class_images = {c: [] for c in TARGET_CLASSES} class_count = {c: 0 for c in TARGET_CLASSES} print("šŸ” Collecting images...") max_iterations = 100000 # safety cap for idx, item in enumerate(dataset): if idx >= max_iterations: print(f"āš ļø Reached safety limit of {max_iterations} samples, stopping collection.") break ann = item["objects"] # Get image and its size (this is the reference for bbox coordinates) img = item["image"] orig_width, orig_height = img.size for cat_id in ann["category"]: # If this category is one of our target classes for cname, coco_id in SELECTED.items(): if cat_id == coco_id and class_count[cname] < IMAGES_PER_CLASS: class_images[cname].append({ "image": img, # PIL image "orig_width": orig_width, # width used for normalization "orig_height": orig_height, # height used for normalization "bboxes": ann["bbox"], # list of bboxes "cats": ann["category"], # list of categories }) class_count[cname] += 1 break # Stop if all collected if all(count >= IMAGES_PER_CLASS for count in class_count.values()): break print("šŸŽ‰ Collection complete") print("šŸ“Š Images per class:") for cname, cnt in class_count.items(): print(f" {cname:15s}: {cnt}") # ------------------------------------------------------------ # STEP 2 — CREATE FOLDERS # ------------------------------------------------------------ DET_IMG_ROOT = os.path.join(BASE_DIR, "detection", "images") DET_LAB_ROOT = os.path.join(BASE_DIR, "detection", "labels") for split in ["train", "val", "test"]: os.makedirs(os.path.join(DET_IMG_ROOT, split), exist_ok=True) os.makedirs(os.path.join(DET_LAB_ROOT, split), exist_ok=True) # ------------------------------------------------------------ # STEP 3 — TRAIN/VAL/TEST SPLIT # ------------------------------------------------------------ train_data = {} val_data = {} test_data = {} for cname, items in class_images.items(): random.shuffle(items) n = len(items) if n == 0: print(f"āš ļø No images collected for class: {cname}") continue t1 = int(0.7 * n) t2 = int(0.85 * n) train_data[cname] = items[:t1] val_data[cname] = items[t1:t2] test_data[cname] = items[t2:] split_dict = { "train": train_data, "val": val_data, "test": test_data, } print("\nšŸ“Š Split sizes (per class):") for cname in TARGET_CLASSES: tr = len(train_data.get(cname, [])) va = len(val_data.get(cname, [])) te = len(test_data.get(cname, [])) print(f" {cname:15s} -> Train={tr:3d}, Val={va:3d}, Test={te:3d}") # ------------------------------------------------------------ # STEP 4 — SAVE DETECTION IMAGES & LABELS (FIXED NORMALIZATION) # ------------------------------------------------------------ print("\nšŸ“ Saving detection images + labels with correct coordinates...\n") YOLO_NAME_TO_ID = {name: i for i, name in enumerate(TARGET_CLASSES)} global_idx = 0 stats = {"train": 0, "val": 0, "test": 0} label_stats = {"train": 0, "val": 0, "test": 0} object_stats = {"train": 0, "val": 0, "test": 0} for split, cls_dict in split_dict.items(): print(f"\nšŸ”¹ Processing {split.upper()} ...") for cname, items in tqdm(cls_dict.items(), desc=f"{split} classes"): for item in items: img = item["image"] orig_w = item["orig_width"] orig_h = item["orig_height"] img_filename = f"image_{global_idx:06d}.jpg" img_path = os.path.join(DET_IMG_ROOT, split, img_filename) lab_path = os.path.join(DET_LAB_ROOT, split, img_filename.replace(".jpg", ".txt")) img.save(img_path, quality=95) stats[split] += 1 bboxes = item["bboxes"] cats = item["cats"] yolo_lines = [] obj_count = 0 for bbox, cat in zip(bboxes, cats): # Only use 25 SmartVision classes coco_class_name = COCO_CLASSES[cat] if coco_class_name not in YOLO_NAME_TO_ID: continue yolo_id = YOLO_NAME_TO_ID[coco_class_name] x, y, w, h = bbox # COCO: pixel values # Normalize using image size x_center = (x + w / 2) / orig_w y_center = (y + h / 2) / orig_h w_norm = w / orig_w h_norm = h / orig_h # discard invalid if not (0 <= x_center <= 1 and 0 <= y_center <= 1): continue if not (0 < w_norm <= 1 and 0 < h_norm <= 1): continue yolo_lines.append( f"{yolo_id} {x_center:.6f} {y_center:.6f} {w_norm:.6f} {h_norm:.6f}" ) obj_count += 1 if yolo_lines: with open(lab_path, "w") as f: f.write("\n".join(yolo_lines)) label_stats[split] += 1 object_stats[split] += obj_count global_idx += 1 print("\nšŸŽ‰ All detection data saved successfully!") for split in ["train", "val", "test"]: print( f" {split.upper():5s} -> " f"images: {stats[split]:4d}, " f"label_files: {label_stats[split]:4d}, " f"objects: {object_stats[split]:5d}" ) # ------------------------------------------------------------ # STEP 5 — WRITE data.yaml # ------------------------------------------------------------ print("\nšŸ“ Writing data.yaml ...") yaml = f""" # SmartVision Dataset - YOLOv8 Configuration (with splits) path: {os.path.abspath(os.path.join(BASE_DIR, "detection"))} train: images/train val: images/val test: images/test nc: {len(TARGET_CLASSES)} names: """ + "\n".join([f" {i}: {name}" for i, name in enumerate(TARGET_CLASSES)]) data_yaml_path = os.path.join(BASE_DIR, "detection", "data.yaml") os.makedirs(os.path.dirname(data_yaml_path), exist_ok=True) with open(data_yaml_path, "w") as f: f.write(yaml) print(f"āœ… Created data.yaml at: {data_yaml_path}")