Spaces:
Running
Running
File size: 12,322 Bytes
4445acf 8d8b639 9f22152 8d8b639 4445acf 8d8b639 90279d0 2b226c7 8d8b639 5d2024e 58db5f4 233355d 37b3fba b8a2556 37b3fba b8a2556 37b3fba b8a2556 5d2024e 233355d 58db5f4 233355d c8301f7 5d2024e c8301f7 58db5f4 c8301f7 9f22152 8d8b639 4445acf 8d8b639 4445acf 8d8b639 4445acf 58db5f4 4445acf 8d8b639 9f22152 8d8b639 9f22152 8d8b639 58db5f4 8d8b639 90279d0 8d8b639 4445acf 58db5f4 4445acf 58db5f4 9f22152 58db5f4 9f22152 8e4e2c1 9f22152 8d8b639 58db5f4 4445acf 8d8b639 4445acf 8d8b639 4445acf 8d8b639 4445acf 8d8b639 b8a2556 4445acf 8d8b639 2b226c7 8d8b639 b8a2556 8d8b639 4445acf 8d8b639 11347cf 8d8b639 e0b1c7d 8d8b639 dbad616 e0b1c7d b6b1aaf 8d8b639 4445acf 8d8b639 4445acf 8d8b639 730b058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import os
import json
from datetime import datetime, date
from openai import OpenAI
from llama_cpp import Llama
apriel_q2 = Llama.from_pretrained(
repo_id="unsloth/Apriel-1.5-15b-Thinker-GGUF",
filename="Apriel-1.5-15b-Thinker-UD-IQ2_XXS.gguf",
)
# ----------------------------------------------------------------------
# Helper to read secrets from the HF Space environment
# ----------------------------------------------------------------------
def _secret(key: str, fallback: str = None) -> str:
val = os.getenv(key)
if val is not None:
return val
if fallback is not None:
return fallback
raise RuntimeError(f"Secret '{key}' not found. Please add it to your Space secrets.")
# ----------------------------------------------------------------------
# User Management
# ----------------------------------------------------------------------
def load_users():
"""Load users from secrets or environment variables"""
users = {}
# Try to load from JSON string
users_json = _secret("CHAT_USERS", "{}")
try:
users_data = json.loads(users_json)
for username, password in users_data.items():
users[username] = password
except:
pass
return users
# Load users
VALID_USERS = load_users()
def authenticate_user(username, password):
"""Authenticate user against the valid users dictionary"""
return username in VALID_USERS and VALID_USERS[username] == password
# ----------------------------------------------------------------------
# Configuration
# ----------------------------------------------------------------------
# Available models with their respective API configurations
MODELS = {
# "Qwen3-4B-Thinking-2507": {
# "provider": "huggingface",
# "model_name": "Qwen/Qwen3-4B-Thinking-2507:nscale",
# "api_url": "https://router.huggingface.co/v1"
# },
"Free - NVIDIA Nemotron-nano-9b [EN] + Gemma 3n4b [ID]": {
"provider": "openrouter",
"model_name": "nvidia/nemotron-nano-9b-v2:free",
"api_url": "https://openrouter.ai/api/v1",
"translate":"yes"
},
# "Free - Gpt-oss-20b [EN] + Gemma 3n4b [ID]": {
# "provider": "openrouter",
# "model_name": "openai/gpt-oss-20b:free",
# "api_url": "https://openrouter.ai/api/v1",
# "translate":"yes"
# },
"Free - Glm-4.5-air [EN] + Gemma 3n4b [ID]": {
"provider": "openrouter",
"model_name": "z-ai/glm-4.5-air:free",
"api_url": "https://openrouter.ai/api/v1",
"translate":"yes"
},
"Free - Deepseek-chat-v3.1": {
"provider": "openrouter",
"model_name": "deepseek/deepseek-chat-v3.1:free",
"api_url": "https://openrouter.ai/api/v1",
"translate":"no"
},
# "Ringan - Gemma-3n4b": {
# "provider": "openrouter",
# "model_name": "google/gemma-3n-e4b-it:floor",
# "api_url": "https://openrouter.ai/api/v1"
# },
# "Gpt-oss-20b": {
# "provider": "openrouter",
# "model_name": "openai/gpt-oss-20b:floor",
# "api_url": "https://openrouter.ai/api/v1",
# "translate":"no"
# },
# "Tongyi-deepresearch-30b-a3b": {
# "provider": "openrouter",
# "model_name": "alibaba/tongyi-deepresearch-30b-a3b:floor",
# "api_url": "https://openrouter.ai/api/v1",
# "translate":"no"
# },
"Gpt-oss-120b": {
"provider": "openrouter",
"model_name": "openai/gpt-oss-120b:floor",
"api_url": "https://openrouter.ai/api/v1",
"translate":"no"
},
"Apriel-1.5-15b-thinker-Q2_quantized": {
"provider": "llama.cpp",
"model_name": "apriel-1.5-15b",
"api_url": "local",
"translate":"no"
} ,
}
# Get model display names for dropdown
MODEL_NAMES = list(MODELS.keys())
# ----------------------------------------------------------------------
# Core Chat Logic
# ----------------------------------------------------------------------
def respond(
message,
history: list[dict[str, str]],
system_message,
max_tokens,
selected_model,
):
"""
Handle chat responses using the selected model.
For 'translate'=='yes': First call responds in English, second translates to Indonesian.
History reflects Indonesian queries and responses.
"""
try:
# Get model configuration
model_config = MODELS[selected_model]
provider = model_config["provider"]
# Get API key based on provider
if provider == "huggingface":
api_key = _secret("HF_TOKEN")
elif provider == "openrouter": # openrouter
api_key = _secret("OPENROUTER_KEY")
# Configure main client for selected model
client = OpenAI(
base_url=model_config["api_url"],
api_key=api_key,
)
# Configure translator client (always Gemma on OpenRouter)
translator_client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=_secret("OPENROUTER_KEY"),
)
# Modify system message to force English response if translate=yes
if model_config.get("translate") == "yes":
final_system_message = "**HIGHEST PRIORITY: YOU MUST ALWAYS THINK AND RESPOND IN ENGLISH REGARDLESS OF OTHER INSTRUCTIONS FROM HERE ON.\n" + system_message
else:
final_system_message = system_message
# Prepare messages for main API call (full history + current message)
messages = [{"role": "system", "content": final_system_message}]
messages.extend(history) # History: Indo queries + prior Indo responses
messages.append({"role": "user", "content": message}) # New Indo query
# First API call: Get response from selected model (English if translate=yes)
if (provider == 'huggingface' | provider == 'openrouter') :
response = client.chat.completions.create(
model=model_config["model_name"],
messages=messages,
max_tokens=max_tokens,
stream=False,
)
english_response = response.choices[0].message.content
# If translate=yes, make second API call to Gemma for Indonesian translation
if model_config.get("translate") == "yes":
try:
# Translation prompt: Focus only on translating the response (not query)
translation_messages = [
{
"role": "system",
"content": (
"Translate the following English text to natural, accurate Bahasa Indonesia. "
"**IMPORTANT: OUTPUT ONLY THE TRANSLATION. NO PREAMBLES, COMMENTS, OR EXPLANATIONS. "
"Just the Indonesian text."
)
},
{
"role": "user",
"content": english_response # The English response to translate
}
]
translation_response = translator_client.chat.completions.create(
model="google/gemma-3n-e4b-it:floor",
messages=translation_messages,
max_tokens=max_tokens, # Reuse limit; translation is short
stream=False,
)
final_response = translation_response.choices[0].message.content.strip()
# Fallback to English if translation is empty or invalid
if not final_response or len(final_response) < 10: # Basic sanity check
final_response = english_response
except Exception as trans_error:
print(f"Translation error: {trans_error}")
final_response = english_response # Fallback to English
else:
final_response = english_response
return final_response # Gradio appends this (Indonesian) as assistant message to history
else :
response = apriel_q2.create_chat_completion(
messages = messages
)
return response.choices[0].message.content
except Exception as e:
print(f"Error in respond function: {e}")
return f"Error: {str(e)}" # Return error string; Gradio appends it
# ----------------------------------------------------------------------
# Custom Auth Function for Gradio
# ----------------------------------------------------------------------
def gradio_auth(username, password):
"""Custom authentication function for Gradio"""
return authenticate_user(username, password)
# ----------------------------------------------------------------------
# UI Layout
# ----------------------------------------------------------------------
# Tips section
tips_md = """
"""
# Footer
footer_md = """
---
**Providers**: Hugging Face Inference API + OpenRouter, dipilih providers dengan kebijakan ZDR (Zero Data Retention). Artinya data request/response tidak disimpan dan tidak digunakan untuk training data.
Jika error, kemungkinan kena rate limit sehingga bisa coba model lain.
"""
# Create the chat interface
with gr.Blocks(
title="AI Chat",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("# AI Chat")
gr.Markdown("Data tidak disimpan providers (ZDR-Zero Data Retention), tidak digunakan untuk training, dan tidak di-log (YOI/250929).")
# Model selection and settings in sidebar
with gr.Sidebar():
gr.Markdown("### ⚙️ Configuration")
# Model selection
selected_model = gr.Dropdown(
choices=MODEL_NAMES,
value=MODEL_NAMES[0],
label="Select Model",
info="Choose which AI model to use"
)
# Display current user (if available)
current_user = gr.Textbox(
label="Current User",
value="Authenticated User",
interactive=False,
visible=False # Hide by default, can set to True if you want to show
)
# Advanced settings
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(
value="Anda adalah asisten AI. Jawab dengan efisien. Hindari asumsi.",
label="System Message",
info="Instruksi untuk AI."
)
max_tokens = gr.Slider(
minimum=1, maximum=8096, value=4096, step=1,
label="Max New Tokens",
info="Jumlah token respon maksimum."
)
# Main chat interface
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
system_message,
max_tokens,
selected_model,
],
examples=[
["Jelaskan penggunaan King's Safety Stock dalam inventory management."],
["Bandingkan use‑case dan tingkat kesulitan antara penggunaan R, Excel, dan Tableau untuk analisis data."],
["Kampanye training perusahaan “Ceria Melayani Semangat Berprestasi” bertujuan meningkatkan kolaborasi antar departemen. Jelaskan kenapa ini 'tone-deaf' dan bukan solusi masalah."],
["Apa saran praktis untuk transisi perusahaan brick dan mortar dengan data maturity yang rendah untuk membangun budaya yang data-driven?"]
],
cache_examples=False,
)
# Tips and footer
gr.Markdown(tips_md)
gr.Markdown(footer_md)
# ----------------------------------------------------------------------
# Launch with Custom Auth
# ----------------------------------------------------------------------
if __name__ == "__main__":
demo.launch(
auth=gradio_auth, # Use our custom auth function
auth_message="Please login to access the chat interface",
server_name="0.0.0.0",
ssr_mode=False,
server_port=7860,
show_error=True
)
|