| import torch.nn as nn | |
| from huggingface_hub import PyTorchModelHubMixin | |
| class ModelColorization(nn.Module, PyTorchModelHubMixin): | |
| def __init__(self): | |
| super(ModelColorization, self).__init__() | |
| self.encoder = nn.Sequential( | |
| nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1), | |
| nn.MaxPool2d(kernel_size=2, stride=2), | |
| nn.ReLU(), | |
| nn.BatchNorm2d(64), | |
| nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), | |
| nn.MaxPool2d(kernel_size=2, stride=2), | |
| nn.ReLU(), | |
| nn.BatchNorm2d(32), | |
| nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1), | |
| nn.MaxPool2d(kernel_size=2, stride=2), | |
| nn.ReLU(), | |
| nn.BatchNorm2d(16), | |
| nn.Flatten(), | |
| nn.Linear(16*45*45, 4000), | |
| ) | |
| self.decoder = nn.Sequential( | |
| nn.Linear(4000, 16 * 45 * 45), | |
| nn.ReLU(), | |
| nn.Unflatten(1, (16, 45, 45)), | |
| nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1), | |
| nn.ReLU(), | |
| nn.BatchNorm2d(32), | |
| nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1), | |
| nn.ReLU(), | |
| nn.BatchNorm2d(64), | |
| nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1), | |
| nn.Sigmoid() | |
| ) | |
| def forward(self, x): | |
| x = self.encoder(x) | |
| x = self.decoder(x) | |
| return x |