Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 3 |
+
|
| 4 |
+
class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
| 5 |
+
def __init__(self):
|
| 6 |
+
super(ModelColorization, self).__init__()
|
| 7 |
+
self.encoder = nn.Sequential(
|
| 8 |
+
nn.Conv2d(1, 256, kernel_size=3, stride=1, padding=1),
|
| 9 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 10 |
+
nn.ReLU(),
|
| 11 |
+
nn.BatchNorm2d(256),
|
| 12 |
+
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
|
| 13 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 14 |
+
nn.ReLU(),
|
| 15 |
+
nn.BatchNorm2d(128),
|
| 16 |
+
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
|
| 17 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 18 |
+
nn.ReLU(),
|
| 19 |
+
nn.BatchNorm2d(64),
|
| 20 |
+
nn.Flatten(),
|
| 21 |
+
nn.Linear(64 * 16 * 16, 1024),
|
| 22 |
+
)
|
| 23 |
+
self.decoder = nn.Sequential(
|
| 24 |
+
nn.Linear(1024, 64 * 16 * 16),
|
| 25 |
+
nn.ReLU(),
|
| 26 |
+
nn.Unflatten(1, (64, 16, 16)),
|
| 27 |
+
nn.ConvTranspose2d(64, 128, kernel_size=2, stride=2),
|
| 28 |
+
nn.ReLU(),
|
| 29 |
+
nn.BatchNorm2d(128),
|
| 30 |
+
nn.ConvTranspose2d(128, 256, kernel_size=2, stride=2),
|
| 31 |
+
nn.ReLU(),
|
| 32 |
+
nn.BatchNorm2d(256),
|
| 33 |
+
nn.ConvTranspose2d(256, 3, kernel_size=2, stride=2),
|
| 34 |
+
nn.Sigmoid(),
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
x = self.encoder(x)
|
| 39 |
+
x = self.decoder(x)
|
| 40 |
+
return x
|