Spaces:
Runtime error
Runtime error
File size: 24,507 Bytes
885c3cb 189fb9e 885c3cb 189fb9e 885c3cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
import colorsys
import gc
from typing import Optional
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image, ImageDraw
from transformers import Sam2VideoModel, Sam2VideoProcessor
def pastel_color_for_object(obj_id: int) -> tuple[int, int, int]:
golden_ratio_conjugate = 0.61803398875
hue = (obj_id * golden_ratio_conjugate) % 1.0
saturation = 0.45
value = 1.0
r_f, g_f, b_f = colorsys.hsv_to_rgb(hue, saturation, value)
return int(r_f * 255), int(g_f * 255), int(b_f * 255)
def try_load_video_frames(video_path_or_url: str) -> tuple[list[Image.Image], dict]:
try:
from transformers.video_utils import load_video # type: ignore
frames, info = load_video(video_path_or_url)
pil_frames = []
for fr in frames:
if isinstance(fr, Image.Image):
pil_frames.append(fr.convert("RGB"))
else:
pil_frames.append(Image.fromarray(fr).convert("RGB"))
info = info if info is not None else {}
if "fps" not in info or not info.get("fps"):
try:
import cv2 # type: ignore
cap = cv2.VideoCapture(video_path_or_url)
fps_val = cap.get(cv2.CAP_PROP_FPS)
cap.release()
if fps_val and fps_val > 0:
info["fps"] = float(fps_val)
except Exception:
pass
return pil_frames, info
except Exception:
try:
import cv2 # type: ignore
cap = cv2.VideoCapture(video_path_or_url)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame_rgb))
fps_val = cap.get(cv2.CAP_PROP_FPS)
cap.release()
info = {
"num_frames": len(frames),
"fps": float(fps_val) if fps_val and fps_val > 0 else None,
}
return frames, info
except Exception as e:
raise RuntimeError(f"Failed to load video: {e}")
def overlay_masks_on_frame(
frame: Image.Image,
masks_per_object: dict[int, np.ndarray],
color_by_obj: dict[int, tuple[int, int, int]],
alpha: float = 0.65,
) -> Image.Image:
base = np.array(frame).astype(np.float32) / 255.0
overlay = base.copy()
for obj_id, mask in masks_per_object.items():
if mask is None:
continue
if mask.dtype != np.float32:
mask = mask.astype(np.float32)
if mask.ndim == 3:
mask = mask.squeeze()
mask = np.clip(mask, 0.0, 1.0)
color = np.array(color_by_obj.get(obj_id, (255, 0, 0)), dtype=np.float32) / 255.0
m = mask[..., None]
overlay = (1.0 - alpha * m) * overlay + (alpha * m) * color
out = np.clip(overlay * 255.0, 0, 255).astype(np.uint8)
return Image.fromarray(out)
def get_device_and_dtype() -> tuple[str, torch.dtype]:
# Force CPU-only on Spaces with zero GPU
return "cpu", torch.float32
class AppState:
def __init__(self):
self.reset()
def reset(self):
self.video_frames: list[Image.Image] = []
self.inference_session = None
self.model: Optional[Sam2VideoModel] = None
self.processor: Optional[Sam2VideoProcessor] = None
self.device: str = "cpu"
self.dtype: torch.dtype = torch.float32
self.video_fps: float | None = None
self.masks_by_frame: dict[int, dict[int, np.ndarray]] = {}
self.color_by_obj: dict[int, tuple[int, int, int]] = {}
self.clicks_by_frame_obj: dict[int, dict[int, list[tuple[int, int, int]]]] = {}
self.boxes_by_frame_obj: dict[int, dict[int, list[tuple[int, int, int, int]]]] = {}
self.composited_frames: dict[int, Image.Image] = {}
self.current_frame_idx: int = 0
self.current_obj_id: int = 1
self.current_label: str = "positive"
self.current_clear_old: bool = True
self.current_prompt_type: str = "Points"
self.pending_box_start: tuple[int, int] | None = None
self.pending_box_start_frame_idx: int | None = None
self.pending_box_start_obj_id: int | None = None
self.is_switching_model: bool = False
self.model_repo_key: str = "tiny"
self.model_repo_id: str | None = None
self.session_repo_id: str | None = None
@property
def num_frames(self) -> int:
return len(self.video_frames)
GLOBAL_STATE = AppState()
def _model_repo_from_key(key: str) -> str:
mapping = {
"tiny": "yonigozlan/sam2.1_hiera_tiny_hf",
"small": "yonigozlan/sam2.1_hiera_small_hf",
"base_plus": "yonigozlan/sam2.1_hiera_base_plus_hf",
"large": "yonigozlan/sam2.1_hiera_large_hf",
}
return mapping.get(key, mapping["base_plus"])
@spaces.GPU()
def load_model_if_needed() -> tuple[Sam2VideoModel, Sam2VideoProcessor, str, torch.dtype]:
desired_repo = _model_repo_from_key(GLOBAL_STATE.model_repo_key)
if GLOBAL_STATE.model is not None and GLOBAL_STATE.processor is not None:
if GLOBAL_STATE.model_repo_id == desired_repo:
return GLOBAL_STATE.model, GLOBAL_STATE.processor, GLOBAL_STATE.device, GLOBAL_STATE.dtype
try:
del GLOBAL_STATE.model
except Exception:
pass
try:
del GLOBAL_STATE.processor
except Exception:
pass
GLOBAL_STATE.model = None
GLOBAL_STATE.processor = None
device, dtype = get_device_and_dtype()
model = Sam2VideoModel.from_pretrained(desired_repo, torch_dtype=dtype)
processor = Sam2VideoProcessor.from_pretrained(desired_repo)
model.to(device)
GLOBAL_STATE.model = model
GLOBAL_STATE.processor = processor
GLOBAL_STATE.device = device
GLOBAL_STATE.dtype = dtype
GLOBAL_STATE.model_repo_id = desired_repo
return model, processor, device, dtype
def ensure_session_for_current_model() -> None:
model, processor, device, dtype = load_model_if_needed()
desired_repo = _model_repo_from_key(GLOBAL_STATE.model_repo_key)
if GLOBAL_STATE.inference_session is None or GLOBAL_STATE.session_repo_id != desired_repo:
if GLOBAL_STATE.video_frames:
GLOBAL_STATE.masks_by_frame.clear()
GLOBAL_STATE.clicks_by_frame_obj.clear()
GLOBAL_STATE.boxes_by_frame_obj.clear()
GLOBAL_STATE.composited_frames.clear()
try:
if GLOBAL_STATE.inference_session is not None:
GLOBAL_STATE.inference_session.reset_inference_session()
except Exception:
pass
GLOBAL_STATE.inference_session = None
gc.collect()
GLOBAL_STATE.inference_session = processor.init_video_session(
video=GLOBAL_STATE.video_frames,
inference_device=device,
video_storage_device="cpu",
)
GLOBAL_STATE.session_repo_id = desired_repo
def init_video_session(video: str | dict):
GLOBAL_STATE.video_frames = []
GLOBAL_STATE.inference_session = None
GLOBAL_STATE.masks_by_frame = {}
GLOBAL_STATE.color_by_obj = {}
load_model_if_needed()
video_path: Optional[str] = None
if isinstance(video, dict):
video_path = video.get("name") or video.get("path") or video.get("data")
elif isinstance(video, str):
video_path = video
else:
video_path = None
if not video_path:
raise gr.Error("Invalid video input.")
frames, info = try_load_video_frames(video_path)
if len(frames) == 0:
raise gr.Error("No frames could be loaded from the video.")
GLOBAL_STATE.video_frames = frames
GLOBAL_STATE.video_fps = None
if isinstance(info, dict) and info.get("fps"):
try:
GLOBAL_STATE.video_fps = float(info["fps"]) or None
except Exception:
GLOBAL_STATE.video_fps = None
processor = GLOBAL_STATE.processor
device = GLOBAL_STATE.device
inference_session = processor.init_video_session(
video=frames,
inference_device=device,
video_storage_device="cpu",
)
GLOBAL_STATE.inference_session = inference_session
first_frame = frames[0]
max_idx = len(frames) - 1
status = f"Loaded {len(frames)} frames @ {GLOBAL_STATE.video_fps or 'unknown'} fps. Device: {device}, dtype: {GLOBAL_STATE.dtype}"
return GLOBAL_STATE, 0, max_idx, first_frame, status
def compose_frame(state: AppState, frame_idx: int) -> Image.Image:
if state is None or state.video_frames is None or len(state.video_frames) == 0:
return None
frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
frame = state.video_frames[frame_idx]
masks = state.masks_by_frame.get(frame_idx, {})
out_img = frame
if len(masks) != 0:
out_img = overlay_masks_on_frame(out_img, masks, state.color_by_obj, alpha=0.65)
clicks_map = state.clicks_by_frame_obj.get(frame_idx)
if clicks_map:
draw = ImageDraw.Draw(out_img)
cross_half = 6
for obj_id, pts in clicks_map.items():
for x, y, lbl in pts:
color = (0, 255, 0) if int(lbl) == 1 else (255, 0, 0)
draw.line([(x - cross_half, y), (x + cross_half, y)], fill=color, width=2)
draw.line([(x, y - cross_half), (x, y + cross_half)], fill=color, width=2)
box_map = state.boxes_by_frame_obj.get(frame_idx)
if box_map:
draw = ImageDraw.Draw(out_img)
for obj_id, boxes in box_map.items():
color = state.color_by_obj.get(obj_id, (255, 255, 255))
for x1, y1, x2, y2 in boxes:
draw.rectangle([(x1, y1), (x2, y2)], outline=color, width=2)
if (
state.pending_box_start is not None
and state.pending_box_start_frame_idx == frame_idx
and state.pending_box_start_obj_id is not None
):
draw = ImageDraw.Draw(out_img)
x, y = state.pending_box_start
cross_half = 6
color = state.color_by_obj.get(state.pending_box_start_obj_id, (255, 255, 255))
draw.line([(x - cross_half, y), (x + cross_half, y)], fill=color, width=2)
draw.line([(x, y - cross_half), (x, y + cross_half)], fill=color, width=2)
state.composited_frames[frame_idx] = out_img
return out_img
def update_frame_display(state: AppState, frame_idx: int) -> Image.Image:
if state is None or state.video_frames is None or len(state.video_frames) == 0:
return None
frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
cached = state.composited_frames.get(frame_idx)
if cached is not None:
return cached
return compose_frame(state, frame_idx)
def _ensure_color_for_obj(obj_id: int):
if obj_id not in GLOBAL_STATE.color_by_obj:
GLOBAL_STATE.color_by_obj[obj_id] = pastel_color_for_object(obj_id)
@spaces.GPU()
def on_image_click(
img: Image.Image | np.ndarray,
state: AppState,
frame_idx: int,
obj_id: int,
label: str,
clear_old: bool,
evt: gr.SelectData,
):
if state is None or state.inference_session is None:
return img
if state.is_switching_model:
return update_frame_display(state, int(frame_idx))
x = y = None
if evt is not None:
try:
if hasattr(evt, "index") and isinstance(evt.index, (list, tuple)) and len(evt.index) == 2:
x, y = int(evt.index[0]), int(evt.index[1])
elif hasattr(evt, "value") and isinstance(evt.value, dict) and "x" in evt.value and "y" in evt.value:
x, y = int(evt.value["x"]), int(evt.value["y"])
except Exception:
x = y = None
if x is None or y is None:
return update_frame_display(state, int(frame_idx))
_ensure_color_for_obj(int(obj_id))
processor = GLOBAL_STATE.processor
model = GLOBAL_STATE.model
inference_session = GLOBAL_STATE.inference_session
if state.current_prompt_type == "Boxes":
if state.pending_box_start is None:
if bool(clear_old):
frame_clicks = state.clicks_by_frame_obj.setdefault(int(frame_idx), {})
frame_clicks[int(obj_id)] = []
state.composited_frames.pop(int(frame_idx), None)
state.pending_box_start = (int(x), int(y))
state.pending_box_start_frame_idx = int(frame_idx)
state.pending_box_start_obj_id = int(obj_id)
state.composited_frames.pop(int(frame_idx), None)
return update_frame_display(state, int(frame_idx))
else:
x1, y1 = state.pending_box_start
x2, y2 = int(x), int(y)
state.pending_box_start = None
state.pending_box_start_frame_idx = None
state.pending_box_start_obj_id = None
state.composited_frames.pop(int(frame_idx), None)
x_min, y_min = min(x1, x2), min(y1, y2)
x_max, y_max = max(x1, x2), max(y1, y2)
processor.add_inputs_to_inference_session(
inference_session=inference_session,
frame_idx=int(frame_idx),
obj_ids=int(obj_id),
input_boxes=[[[x_min, y_min, x_max, y_max]]],
clear_old_inputs=bool(clear_old),
)
frame_boxes = state.boxes_by_frame_obj.setdefault(int(frame_idx), {})
obj_boxes = frame_boxes.setdefault(int(obj_id), [])
if bool(clear_old):
obj_boxes.clear()
obj_boxes.append((x_min, y_min, x_max, y_max))
state.composited_frames.pop(int(frame_idx), None)
else:
label_int = 1 if str(label).lower().startswith("pos") else 0
if bool(clear_old):
frame_boxes = state.boxes_by_frame_obj.setdefault(int(frame_idx), {})
frame_boxes[int(obj_id)] = []
state.composited_frames.pop(int(frame_idx), None)
processor.add_inputs_to_inference_session(
inference_session=inference_session,
frame_idx=int(frame_idx),
obj_ids=int(obj_id),
input_points=[[[[int(x), int(y)]]]],
input_labels=[[[int(label_int)]]],
clear_old_inputs=bool(clear_old),
)
frame_clicks = state.clicks_by_frame_obj.setdefault(int(frame_idx), {})
obj_clicks = frame_clicks.setdefault(int(obj_id), [])
if bool(clear_old):
obj_clicks.clear()
obj_clicks.append((int(x), int(y), int(label_int)))
state.composited_frames.pop(int(frame_idx), None)
with torch.inference_mode():
outputs = model(inference_session=inference_session, frame_idx=int(frame_idx))
H = inference_session.video_height
W = inference_session.video_width
pred_masks = outputs.pred_masks.detach().cpu()
video_res_masks = processor.post_process_masks([pred_masks], original_sizes=[[H, W]])[0]
masks_for_frame: dict[int, np.ndarray] = {}
obj_ids_order = list(inference_session.obj_ids)
for i, oid in enumerate(obj_ids_order):
mask_i = video_res_masks[i]
mask_2d = mask_i.cpu().numpy().squeeze()
masks_for_frame[int(oid)] = mask_2d
GLOBAL_STATE.masks_by_frame[int(frame_idx)] = masks_for_frame
GLOBAL_STATE.composited_frames.pop(int(frame_idx), None)
return update_frame_display(GLOBAL_STATE, int(frame_idx))
@spaces.GPU()
def propagate_masks(state: AppState, progress=gr.Progress()):
if state is None or state.inference_session is None:
yield "Load a video first."
return
processor = GLOBAL_STATE.processor
model = GLOBAL_STATE.model
inference_session = GLOBAL_STATE.inference_session
total = max(1, GLOBAL_STATE.num_frames)
processed = 0
yield f"Propagating masks: {processed}/{total}"
with torch.inference_mode():
for sam2_video_output in model.propagate_in_video_iterator(inference_session):
H = inference_session.video_height
W = inference_session.video_width
pred_masks = sam2_video_output.pred_masks.detach().cpu()
video_res_masks = processor.post_process_masks([pred_masks], original_sizes=[[H, W]])[0]
frame_idx = int(sam2_video_output.frame_idx)
masks_for_frame: dict[int, np.ndarray] = {}
obj_ids_order = list(inference_session.obj_ids)
for i, oid in enumerate(obj_ids_order):
mask_2d = video_res_masks[i].cpu().numpy().squeeze()
masks_for_frame[int(oid)] = mask_2d
GLOBAL_STATE.masks_by_frame[frame_idx] = masks_for_frame
GLOBAL_STATE.composited_frames.pop(frame_idx, None)
processed += 1
progress((processed, total), f"Propagating masks: {processed}/{total}")
yield f"Propagating masks: {processed}/{total}"
yield f"Propagated masks across {processed} frames for {len(inference_session.obj_ids)} objects."
def reset_session():
if not GLOBAL_STATE.video_frames:
return GLOBAL_STATE, None, 0, 0, "Session reset. Load a new video."
GLOBAL_STATE.masks_by_frame.clear()
GLOBAL_STATE.clicks_by_frame_obj.clear()
GLOBAL_STATE.boxes_by_frame_obj.clear()
GLOBAL_STATE.composited_frames.clear()
GLOBAL_STATE.pending_box_start = None
GLOBAL_STATE.pending_box_start_frame_idx = None
GLOBAL_STATE.pending_box_start_obj_id = None
try:
if GLOBAL_STATE.inference_session is not None:
GLOBAL_STATE.inference_session.reset_inference_session()
except Exception:
pass
GLOBAL_STATE.inference_session = None
gc.collect()
ensure_session_for_current_model()
current_idx = int(getattr(GLOBAL_STATE, "current_frame_idx", 0))
current_idx = max(0, min(current_idx, GLOBAL_STATE.num_frames - 1))
preview_img = update_frame_display(GLOBAL_STATE, current_idx)
slider_minmax = gr.update(minimum=0, maximum=max(GLOBAL_STATE.num_frames - 1, 0), interactive=True)
slider_value = gr.update(value=current_idx)
status = "Session reset. Prompts cleared; video preserved."
return GLOBAL_STATE, preview_img, slider_minmax, slider_value, status
with gr.Blocks(title="SAM2 Video (Transformers) - Interactive Segmentation (CPU)") as demo:
state = gr.State(GLOBAL_STATE)
gr.Markdown(
"""
**SAM2 Video (Transformers)** — CPU-only Space. Upload a video, click to add positive/negative points per object or draw two-click boxes, preview masks, then propagate across the video. Use the slider to scrub frames.
"""
)
with gr.Row():
with gr.Column(scale=1):
video_in = gr.Video(label="Upload video", sources=["upload", "webcam"], interactive=True)
ckpt_radio = gr.Radio(
choices=["tiny", "small", "base_plus", "large"],
value="tiny",
label="SAM2 checkpoint",
)
ckpt_progress = gr.Markdown(visible=False)
load_status = gr.Markdown(visible=True)
reset_btn = gr.Button("Reset Session", variant="secondary")
examples_list = [
["./tennis.mp4"],
]
with gr.Column(scale=2):
preview = gr.Image(label="Preview", interactive=True)
frame_slider = gr.Slider(label="Frame", minimum=0, maximum=0, step=1, value=0, interactive=True)
with gr.Row():
obj_id_inp = gr.Number(value=1, precision=0, label="Object ID")
label_radio = gr.Radio(choices=["positive", "negative"], value="positive", label="Point label")
clear_old_chk = gr.Checkbox(value=True, label="Clear old inputs for this object")
prompt_type = gr.Radio(choices=["Points", "Boxes"], value="Points", label="Prompt type")
with gr.Column():
propagate_btn = gr.Button("Propagate across video", variant="primary")
propagate_status = gr.Markdown(visible=True)
with gr.Row():
render_btn = gr.Button("Render MP4 for smooth playback")
playback_video = gr.Video(label="Rendered Playback", interactive=False)
def _on_video_change(video):
s, min_idx, max_idx, first_frame, status = init_video_session(video)
return s, gr.update(minimum=min_idx, maximum=max_idx, value=min_idx, interactive=True), first_frame, status
video_in.change(
_on_video_change, inputs=[video_in], outputs=[state, frame_slider, preview, load_status], show_progress=True
)
gr.Examples(
examples=examples_list,
inputs=[video_in],
fn=_on_video_change,
outputs=[state, frame_slider, preview, load_status],
label="Examples",
cache_examples=False,
examples_per_page=5,
)
def _on_ckpt_change(s: AppState, key: str):
if s is not None and key:
key = str(key)
if key != s.model_repo_key:
s.is_switching_model = True
s.model_repo_key = key
s.model_repo_id = None
s.model = None
s.processor = None
yield gr.update(visible=True, value=f"Loading checkpoint: {key}...")
ensure_session_for_current_model()
if s is not None:
s.is_switching_model = False
yield gr.update(visible=False, value="")
ckpt_radio.change(_on_ckpt_change, inputs=[state, ckpt_radio], outputs=[ckpt_progress])
def _rebind_session_after_ckpt(s: AppState):
ensure_session_for_current_model()
if s is not None:
s.pending_box_start = None
return gr.update()
ckpt_radio.change(_rebind_session_after_ckpt, inputs=[state], outputs=[])
def _sync_frame_idx(state_in: AppState, idx: int):
if state_in is not None:
state_in.current_frame_idx = int(idx)
return update_frame_display(state_in, int(idx))
frame_slider.change(_sync_frame_idx, inputs=[state, frame_slider], outputs=preview)
def _sync_obj_id(s: AppState, oid):
if s is not None and oid is not None:
s.current_obj_id = int(oid)
return gr.update()
obj_id_inp.change(_sync_obj_id, inputs=[state, obj_id_inp], outputs=[])
def _sync_label(s: AppState, lab: str):
if s is not None and lab is not None:
s.current_label = str(lab)
return gr.update()
label_radio.change(_sync_label, inputs=[state, label_radio], outputs=[])
def _sync_prompt_type(s: AppState, val: str):
if s is not None and val is not None:
s.current_prompt_type = str(val)
s.pending_box_start = None
show_labels = str(val).lower() == "points"
return gr.update(visible=show_labels)
prompt_type.change(_sync_prompt_type, inputs=[state, prompt_type], outputs=[label_radio])
preview.select(on_image_click, [preview, state, frame_slider, obj_id_inp, label_radio, clear_old_chk], preview)
def _render_video(s: AppState):
if s is None or s.num_frames == 0:
raise gr.Error("Load a video first.")
fps = s.video_fps if s.video_fps and s.video_fps > 0 else 12
frames_np = []
for idx in range(s.num_frames):
img = s.composited_frames.get(idx)
if img is None:
img = compose_frame(s, idx)
frames_np.append(np.array(img)[:, :, ::-1])
if (idx + 1) % 60 == 0:
gc.collect()
out_path = "/tmp/sam2_playback.mp4"
try:
import imageio.v3 as iio # type: ignore
iio.imwrite(out_path, [fr[:, :, ::-1] for fr in frames_np], plugin="pyav", fps=fps)
return out_path
except Exception:
try:
import imageio.v2 as imageio # type: ignore
imageio.mimsave(out_path, [fr[:, :, ::-1] for fr in frames_np], fps=fps)
return out_path
except Exception as e:
raise gr.Error(f"Failed to render video: {e}")
render_btn.click(_render_video, inputs=[state], outputs=[playback_video])
propagate_btn.click(propagate_masks, inputs=[state], outputs=[propagate_status], show_progress=True)
reset_btn.click(
reset_session,
inputs=None,
outputs=[state, preview, frame_slider, frame_slider, load_status],
)
demo.queue(api_open=False).launch()
|