Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
9ca5268
1
Parent(s):
6d0e912
add debug and load with cv2
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gc
|
|
| 3 |
from copy import deepcopy
|
| 4 |
from typing import Optional
|
| 5 |
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
| 8 |
import spaces
|
|
@@ -10,7 +11,6 @@ import torch
|
|
| 10 |
from gradio.themes import Soft
|
| 11 |
from PIL import Image, ImageDraw
|
| 12 |
|
| 13 |
-
# Prefer local transformers in the workspace
|
| 14 |
from transformers import AutoModel, Sam2VideoProcessor
|
| 15 |
|
| 16 |
|
|
@@ -32,56 +32,25 @@ def try_load_video_frames(video_path_or_url: str) -> tuple[list[Image.Image], di
|
|
| 32 |
"""Load video frames as PIL Images using transformers.video_utils if available,
|
| 33 |
otherwise fall back to OpenCV. Returns (frames, info).
|
| 34 |
"""
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
cap.release()
|
| 55 |
-
if fps_val and fps_val > 0:
|
| 56 |
-
info["fps"] = float(fps_val)
|
| 57 |
-
except Exception as e:
|
| 58 |
-
print(f"Failed to render video with cv2: {e}")
|
| 59 |
-
pass
|
| 60 |
-
return pil_frames, info
|
| 61 |
-
except Exception as e:
|
| 62 |
-
print(f"Failed to load video with transformers.video_utils: {e}")
|
| 63 |
-
# Fallback to OpenCV
|
| 64 |
-
try:
|
| 65 |
-
import cv2 # type: ignore
|
| 66 |
-
|
| 67 |
-
cap = cv2.VideoCapture(video_path_or_url)
|
| 68 |
-
frames = []
|
| 69 |
-
while cap.isOpened():
|
| 70 |
-
ret, frame = cap.read()
|
| 71 |
-
if not ret:
|
| 72 |
-
break
|
| 73 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 74 |
-
frames.append(Image.fromarray(frame_rgb))
|
| 75 |
-
# Gather fps if available
|
| 76 |
-
fps_val = cap.get(cv2.CAP_PROP_FPS)
|
| 77 |
-
cap.release()
|
| 78 |
-
info = {
|
| 79 |
-
"num_frames": len(frames),
|
| 80 |
-
"fps": float(fps_val) if fps_val and fps_val > 0 else None,
|
| 81 |
-
}
|
| 82 |
-
return frames, info
|
| 83 |
-
except Exception as e:
|
| 84 |
-
raise RuntimeError(f"Failed to load video: {e}")
|
| 85 |
|
| 86 |
|
| 87 |
def overlay_masks_on_frame(
|
|
@@ -190,6 +159,7 @@ def load_model_if_needed(GLOBAL_STATE: gr.State) -> tuple[AutoModel, Sam2VideoPr
|
|
| 190 |
model = AutoModel.from_pretrained(desired_repo)
|
| 191 |
processor = Sam2VideoProcessor.from_pretrained(desired_repo)
|
| 192 |
model.to(device, dtype=dtype)
|
|
|
|
| 193 |
|
| 194 |
GLOBAL_STATE.model = model
|
| 195 |
GLOBAL_STATE.processor = processor
|
|
@@ -197,14 +167,12 @@ def load_model_if_needed(GLOBAL_STATE: gr.State) -> tuple[AutoModel, Sam2VideoPr
|
|
| 197 |
GLOBAL_STATE.dtype = dtype
|
| 198 |
GLOBAL_STATE.model_repo_id = desired_repo
|
| 199 |
|
| 200 |
-
return model, processor, device, dtype
|
| 201 |
-
|
| 202 |
|
| 203 |
def ensure_session_for_current_model(GLOBAL_STATE: gr.State) -> None:
|
| 204 |
"""Ensure the model/processor match the selected repo and inference_session exists.
|
| 205 |
If a video is already loaded, re-initialize the inference session when needed.
|
| 206 |
"""
|
| 207 |
-
|
| 208 |
desired_repo = _model_repo_from_key(GLOBAL_STATE.model_repo_key)
|
| 209 |
if GLOBAL_STATE.inference_session is None or GLOBAL_STATE.session_repo_id != desired_repo:
|
| 210 |
if GLOBAL_STATE.video_frames:
|
|
@@ -214,10 +182,10 @@ def ensure_session_for_current_model(GLOBAL_STATE: gr.State) -> None:
|
|
| 214 |
GLOBAL_STATE.boxes_by_frame_obj.clear()
|
| 215 |
GLOBAL_STATE.composited_frames.clear()
|
| 216 |
GLOBAL_STATE.inference_session = None
|
| 217 |
-
GLOBAL_STATE.inference_session = processor.init_video_session(
|
| 218 |
-
inference_device=device,
|
| 219 |
video_storage_device="cpu",
|
| 220 |
-
dtype=dtype,
|
| 221 |
)
|
| 222 |
GLOBAL_STATE.session_repo_id = desired_repo
|
| 223 |
|
|
@@ -230,7 +198,7 @@ def init_video_session(GLOBAL_STATE: gr.State, video: str | dict) -> tuple[AppSt
|
|
| 230 |
GLOBAL_STATE.masks_by_frame = {}
|
| 231 |
GLOBAL_STATE.color_by_obj = {}
|
| 232 |
|
| 233 |
-
|
| 234 |
|
| 235 |
# Gradio Video may provide a dict with 'name' or a direct file path
|
| 236 |
video_path: Optional[str] = None
|
|
@@ -262,10 +230,10 @@ def init_video_session(GLOBAL_STATE: gr.State, video: str | dict) -> tuple[AppSt
|
|
| 262 |
# Try to capture original FPS if provided by loader
|
| 263 |
GLOBAL_STATE.video_fps = float(fps_in)
|
| 264 |
# Initialize session
|
| 265 |
-
inference_session = processor.init_video_session(
|
| 266 |
-
inference_device=device,
|
| 267 |
video_storage_device="cpu",
|
| 268 |
-
dtype=dtype,
|
| 269 |
)
|
| 270 |
GLOBAL_STATE.inference_session = inference_session
|
| 271 |
|
|
@@ -273,7 +241,7 @@ def init_video_session(GLOBAL_STATE: gr.State, video: str | dict) -> tuple[AppSt
|
|
| 273 |
max_idx = len(frames) - 1
|
| 274 |
status = (
|
| 275 |
f"Loaded {len(frames)} frames @ {GLOBAL_STATE.video_fps or 'unknown'} fps{trimmed_note}. "
|
| 276 |
-
f"Device: {device}, dtype: bfloat16"
|
| 277 |
)
|
| 278 |
return GLOBAL_STATE, 0, max_idx, first_frame, status
|
| 279 |
|
|
@@ -520,8 +488,6 @@ def propagate_masks(GLOBAL_STATE: gr.State):
|
|
| 520 |
# Every 15th frame (or last), move slider to current frame to update preview via slider binding
|
| 521 |
if processed % 30 == 0 or processed == total:
|
| 522 |
yield GLOBAL_STATE, f"Propagating masks: {processed}/{total}", gr.update(value=frame_idx)
|
| 523 |
-
# else:
|
| 524 |
-
# yield GLOBAL_STATE, f"Propagating masks: {processed}/{total}", gr.update()
|
| 525 |
|
| 526 |
text = f"Propagated masks across {processed} frames for {len(inference_session.obj_ids)} objects."
|
| 527 |
|
|
@@ -752,8 +718,6 @@ with gr.Blocks(title="SAM2 Video (Transformers) - Interactive Segmentation", the
|
|
| 752 |
out_path = "/tmp/sam2_playback.mp4"
|
| 753 |
# Prefer imageio with PyAV/ffmpeg to respect exact fps
|
| 754 |
try:
|
| 755 |
-
import cv2 # type: ignore
|
| 756 |
-
|
| 757 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 758 |
writer = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
|
| 759 |
for fr_bgr in frames_np:
|
|
|
|
| 3 |
from copy import deepcopy
|
| 4 |
from typing import Optional
|
| 5 |
|
| 6 |
+
import cv2
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
import spaces
|
|
|
|
| 11 |
from gradio.themes import Soft
|
| 12 |
from PIL import Image, ImageDraw
|
| 13 |
|
|
|
|
| 14 |
from transformers import AutoModel, Sam2VideoProcessor
|
| 15 |
|
| 16 |
|
|
|
|
| 32 |
"""Load video frames as PIL Images using transformers.video_utils if available,
|
| 33 |
otherwise fall back to OpenCV. Returns (frames, info).
|
| 34 |
"""
|
| 35 |
+
|
| 36 |
+
cap = cv2.VideoCapture(video_path_or_url)
|
| 37 |
+
frames = []
|
| 38 |
+
print("loading video frames")
|
| 39 |
+
while cap.isOpened():
|
| 40 |
+
ret, frame = cap.read()
|
| 41 |
+
if not ret:
|
| 42 |
+
break
|
| 43 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 44 |
+
frames.append(Image.fromarray(frame_rgb))
|
| 45 |
+
# Gather fps if available
|
| 46 |
+
fps_val = cap.get(cv2.CAP_PROP_FPS)
|
| 47 |
+
cap.release()
|
| 48 |
+
print("loaded video frames")
|
| 49 |
+
info = {
|
| 50 |
+
"num_frames": len(frames),
|
| 51 |
+
"fps": float(fps_val) if fps_val and fps_val > 0 else None,
|
| 52 |
+
}
|
| 53 |
+
return frames, info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
def overlay_masks_on_frame(
|
|
|
|
| 159 |
model = AutoModel.from_pretrained(desired_repo)
|
| 160 |
processor = Sam2VideoProcessor.from_pretrained(desired_repo)
|
| 161 |
model.to(device, dtype=dtype)
|
| 162 |
+
print("model loaded")
|
| 163 |
|
| 164 |
GLOBAL_STATE.model = model
|
| 165 |
GLOBAL_STATE.processor = processor
|
|
|
|
| 167 |
GLOBAL_STATE.dtype = dtype
|
| 168 |
GLOBAL_STATE.model_repo_id = desired_repo
|
| 169 |
|
|
|
|
|
|
|
| 170 |
|
| 171 |
def ensure_session_for_current_model(GLOBAL_STATE: gr.State) -> None:
|
| 172 |
"""Ensure the model/processor match the selected repo and inference_session exists.
|
| 173 |
If a video is already loaded, re-initialize the inference session when needed.
|
| 174 |
"""
|
| 175 |
+
load_model_if_needed(GLOBAL_STATE)
|
| 176 |
desired_repo = _model_repo_from_key(GLOBAL_STATE.model_repo_key)
|
| 177 |
if GLOBAL_STATE.inference_session is None or GLOBAL_STATE.session_repo_id != desired_repo:
|
| 178 |
if GLOBAL_STATE.video_frames:
|
|
|
|
| 182 |
GLOBAL_STATE.boxes_by_frame_obj.clear()
|
| 183 |
GLOBAL_STATE.composited_frames.clear()
|
| 184 |
GLOBAL_STATE.inference_session = None
|
| 185 |
+
GLOBAL_STATE.inference_session = GLOBAL_STATE.processor.init_video_session(
|
| 186 |
+
inference_device=GLOBAL_STATE.device,
|
| 187 |
video_storage_device="cpu",
|
| 188 |
+
dtype=GLOBAL_STATE.dtype,
|
| 189 |
)
|
| 190 |
GLOBAL_STATE.session_repo_id = desired_repo
|
| 191 |
|
|
|
|
| 198 |
GLOBAL_STATE.masks_by_frame = {}
|
| 199 |
GLOBAL_STATE.color_by_obj = {}
|
| 200 |
|
| 201 |
+
load_model_if_needed(GLOBAL_STATE)
|
| 202 |
|
| 203 |
# Gradio Video may provide a dict with 'name' or a direct file path
|
| 204 |
video_path: Optional[str] = None
|
|
|
|
| 230 |
# Try to capture original FPS if provided by loader
|
| 231 |
GLOBAL_STATE.video_fps = float(fps_in)
|
| 232 |
# Initialize session
|
| 233 |
+
inference_session = GLOBAL_STATE.processor.init_video_session(
|
| 234 |
+
inference_device=GLOBAL_STATE.device,
|
| 235 |
video_storage_device="cpu",
|
| 236 |
+
dtype=GLOBAL_STATE.dtype,
|
| 237 |
)
|
| 238 |
GLOBAL_STATE.inference_session = inference_session
|
| 239 |
|
|
|
|
| 241 |
max_idx = len(frames) - 1
|
| 242 |
status = (
|
| 243 |
f"Loaded {len(frames)} frames @ {GLOBAL_STATE.video_fps or 'unknown'} fps{trimmed_note}. "
|
| 244 |
+
f"Device: {GLOBAL_STATE.device}, dtype: bfloat16"
|
| 245 |
)
|
| 246 |
return GLOBAL_STATE, 0, max_idx, first_frame, status
|
| 247 |
|
|
|
|
| 488 |
# Every 15th frame (or last), move slider to current frame to update preview via slider binding
|
| 489 |
if processed % 30 == 0 or processed == total:
|
| 490 |
yield GLOBAL_STATE, f"Propagating masks: {processed}/{total}", gr.update(value=frame_idx)
|
|
|
|
|
|
|
| 491 |
|
| 492 |
text = f"Propagated masks across {processed} frames for {len(inference_session.obj_ids)} objects."
|
| 493 |
|
|
|
|
| 718 |
out_path = "/tmp/sam2_playback.mp4"
|
| 719 |
# Prefer imageio with PyAV/ffmpeg to respect exact fps
|
| 720 |
try:
|
|
|
|
|
|
|
| 721 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 722 |
writer = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
|
| 723 |
for fr_bgr in frames_np:
|