Spaces:
Build error
Build error
| from transformers import BertTokenizer | |
| import torch | |
| class TokenizerProcessor: | |
| def __init__(self, tokenizer_name='bert-base-uncased'): | |
| self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name) | |
| """def tokenize_and_encode(self, input_texts, output_texts, max_length=100): | |
| encoded = self.tokenizer.batch_encode_plus( | |
| text_pair=list(zip(input_texts, output_texts)), | |
| padding='max_length', | |
| truncation=True, | |
| max_length=max_length, | |
| return_attention_mask=True, | |
| return_tensors='pt' | |
| ) | |
| return encoded""" | |
| def encode(self,input_texts, output_texts, max_length=512): | |
| return self.tokenizer.encode_plus( | |
| text_pair=list(zip(input_texts, output_texts)), | |
| padding='max_length', | |
| truncation=True, # Token dizisini kısaltır | |
| max_length=max_length, | |
| return_tensors='pt' | |
| ) | |
| """paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, return_tensors="pt") | |
| not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, return_tensors="pt") | |
| paraphrase_classification_logits = model(**paraphrase)[0] | |
| not_paraphrase_classification_logits = model(**not_paraphrase)[0]""" | |
| def custom_padding(self, input_ids_list, max_length=100, pad_token_id=0): | |
| padded_inputs = [] | |
| for ids in input_ids_list: | |
| if len(ids) < max_length: | |
| padded_ids = ids + [pad_token_id] * (max_length - len(ids)) | |
| else: | |
| padded_ids = ids[:max_length] | |
| padded_inputs.append(padded_ids) | |
| return padded_inputs | |
| def pad_and_truncate_pairs(self, input_texts, output_texts, max_length=512): | |
| #input ve output verilerinin uzunluğunu eşitleme | |
| inputs = self.tokenizer(input_texts, padding=False, truncation=False, return_tensors=None) | |
| outputs = self.tokenizer(output_texts, padding=False, truncation=False, return_tensors=None) | |
| input_ids = self.custom_padding(inputs['input_ids'], max_length, self.tokenizer.pad_token_id) | |
| output_ids = self.custom_padding(outputs['input_ids'], max_length, self.tokenizer.pad_token_id) | |
| input_ids_tensor = torch.tensor(input_ids) | |
| output_ids_tensor = torch.tensor(output_ids) | |
| input_attention_mask = (input_ids_tensor != self.tokenizer.pad_token_id).long() | |
| output_attention_mask = (output_ids_tensor != self.tokenizer.pad_token_id).long() | |
| return { | |
| 'input_ids': input_ids_tensor, | |
| 'input_attention_mask': input_attention_mask, | |
| 'output_ids': output_ids_tensor, | |
| 'output_attention_mask': output_attention_mask | |
| } |