Spaces:
Build error
Build error
Upload 2 files
Browse files- database.py +175 -0
- t5.py +13 -0
database.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
| 5 |
+
from transformers import BertTokenizer, BertForQuestionAnswering, BertConfig,AutoModelForCausalLM
|
| 6 |
+
from pymongo import MongoClient
|
| 7 |
+
import torchtext
|
| 8 |
+
torchtext.disable_torchtext_deprecation_warning()
|
| 9 |
+
from torchtext.data import get_tokenizer
|
| 10 |
+
from yeni_tokenize import TokenizerProcessor
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Database:
|
| 14 |
+
|
| 15 |
+
# MongoDB connection settings
|
| 16 |
+
|
| 17 |
+
def get_mongodb(database_name='yeniDatabase', collection_name='test', host='localhost', port=27017):
|
| 18 |
+
"""
|
| 19 |
+
MongoDB connection and collection selection
|
| 20 |
+
"""
|
| 21 |
+
client = MongoClient(f'mongodb://{host}:{port}/')
|
| 22 |
+
db = client[database_name]
|
| 23 |
+
collection = db[collection_name]
|
| 24 |
+
return collection
|
| 25 |
+
|
| 26 |
+
@staticmethod
|
| 27 |
+
def get_mongodb():
|
| 28 |
+
# MongoDB bağlantı bilgilerini döndürecek şekilde tanımlanmalıdır.
|
| 29 |
+
return 'mongodb://localhost:27017/', 'yeniDatabase', 'train'
|
| 30 |
+
|
| 31 |
+
@staticmethod
|
| 32 |
+
def get_input_texts():
|
| 33 |
+
# MongoDB bağlantı bilgilerini alma
|
| 34 |
+
mongo_url, db_name, collection_name = Database.get_mongodb()
|
| 35 |
+
# MongoDB'ye bağlanma
|
| 36 |
+
client = MongoClient(mongo_url)
|
| 37 |
+
db = client[db_name]
|
| 38 |
+
collection = db[collection_name]
|
| 39 |
+
# Sorguyu tanımlama
|
| 40 |
+
query = {"Prompt": {"$exists": True}}
|
| 41 |
+
# Sorguyu çalıştırma ve dökümanları çekme
|
| 42 |
+
cursor = collection.find(query, {"Prompt": 1, "_id": 0})
|
| 43 |
+
# Cursor'ı döküman listesine dönüştürme
|
| 44 |
+
input_texts_from_db = [doc['Prompt'] for doc in cursor]
|
| 45 |
+
# Input text'leri döndürme
|
| 46 |
+
# Düz metin listesine dönüştürme
|
| 47 |
+
return input_texts_from_db
|
| 48 |
+
input_text= get_input_texts()
|
| 49 |
+
print("metinler yazılıyor:")
|
| 50 |
+
for text in input_text:
|
| 51 |
+
print(text)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@staticmethod
|
| 55 |
+
def get_output_texts():
|
| 56 |
+
# MongoDB bağlantı bilgilerini alma
|
| 57 |
+
mongo_url, db_name, collection_name = Database.get_mongodb()
|
| 58 |
+
# MongoDB'ye bağlanma
|
| 59 |
+
client = MongoClient(mongo_url)
|
| 60 |
+
db = client[db_name]
|
| 61 |
+
collection = db[collection_name]
|
| 62 |
+
# Sorguyu tanımlama
|
| 63 |
+
query = {"Response": {"$exists": True}}
|
| 64 |
+
# Sorguyu çalıştırma ve dökümanları çekme
|
| 65 |
+
cursor = collection.find(query, {"Response": 1, "_id": 0})
|
| 66 |
+
# Cursor'ı döküman listesine dönüştürme
|
| 67 |
+
output_texts_from_db = [doc['Response'] for doc in cursor]
|
| 68 |
+
#output metin listesine çevirme
|
| 69 |
+
return output_texts_from_db
|
| 70 |
+
|
| 71 |
+
@staticmethod
|
| 72 |
+
def get_average_prompt_token_length():
|
| 73 |
+
# MongoDB bağlantı bilgilerini alma
|
| 74 |
+
mongo_url, db_name, collection_name = Database.get_mongodb()
|
| 75 |
+
# MongoDB'ye bağlanma
|
| 76 |
+
client = MongoClient(mongo_url)
|
| 77 |
+
db = client[db_name]
|
| 78 |
+
collection = db[collection_name]
|
| 79 |
+
# Tüm dökümanları çekme ve 'prompt_token_length' alanını alma
|
| 80 |
+
docs = collection.find({}, {'Prompt_token_length': 1})
|
| 81 |
+
# 'prompt_token_length' değerlerini toplama ve sayma
|
| 82 |
+
total_length = 0
|
| 83 |
+
count = 0
|
| 84 |
+
for doc in docs:
|
| 85 |
+
if 'Prompt_token_length' in doc:
|
| 86 |
+
total_length += doc['Prompt_token_length']
|
| 87 |
+
count += 1
|
| 88 |
+
# Ortalama hesaplama
|
| 89 |
+
average_length = total_length / count if count > 0 else 0
|
| 90 |
+
return int(average_length)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# Tokenizer ve Modeli yükleme
|
| 94 |
+
"""
|
| 95 |
+
class TokenizerProcessor:
|
| 96 |
+
def __init__(self, tokenizer_name='bert-base-uncased'):
|
| 97 |
+
self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
|
| 98 |
+
|
| 99 |
+
def tokenize_and_encode(self, input_texts, output_texts, max_length=100):
|
| 100 |
+
encoded = self.tokenizer.batch_encode_plus(
|
| 101 |
+
text_pair=list(zip(input_texts, output_texts)),
|
| 102 |
+
padding='max_length',
|
| 103 |
+
truncation=True,
|
| 104 |
+
max_length=max_length,
|
| 105 |
+
return_attention_mask=True,
|
| 106 |
+
return_tensors='pt'
|
| 107 |
+
)
|
| 108 |
+
return encoded
|
| 109 |
+
|
| 110 |
+
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, return_tensors="pt")
|
| 111 |
+
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, return_tensors="pt")
|
| 112 |
+
|
| 113 |
+
paraphrase_classification_logits = model(**paraphrase)[0]
|
| 114 |
+
not_paraphrase_classification_logits = model(**not_paraphrase)[0]
|
| 115 |
+
def custom_padding(self, input_ids_list, max_length=100, pad_token_id=0):
|
| 116 |
+
padded_inputs = []
|
| 117 |
+
for ids in input_ids_list:
|
| 118 |
+
if len(ids) < max_length:
|
| 119 |
+
padded_ids = ids + [pad_token_id] * (max_length - len(ids))
|
| 120 |
+
else:
|
| 121 |
+
padded_ids = ids[:max_length]
|
| 122 |
+
padded_inputs.append(padded_ids)
|
| 123 |
+
return padded_inputs
|
| 124 |
+
|
| 125 |
+
def pad_and_truncate_pairs(self, input_texts, output_texts, max_length=100):
|
| 126 |
+
|
| 127 |
+
#input ve output verilerinin uzunluğunu eşitleme
|
| 128 |
+
inputs = self.tokenizer(input_texts, padding=False, truncation=False, return_tensors=None)
|
| 129 |
+
outputs = self.tokenizer(output_texts, padding=False, truncation=False, return_tensors=None)
|
| 130 |
+
|
| 131 |
+
input_ids = self.custom_padding(inputs['input_ids'], max_length, self.tokenizer.pad_token_id)
|
| 132 |
+
output_ids = self.custom_padding(outputs['input_ids'], max_length, self.tokenizer.pad_token_id)
|
| 133 |
+
|
| 134 |
+
input_ids_tensor = torch.tensor(input_ids)
|
| 135 |
+
output_ids_tensor = torch.tensor(output_ids)
|
| 136 |
+
|
| 137 |
+
input_attention_mask = (input_ids_tensor != self.tokenizer.pad_token_id).long()
|
| 138 |
+
output_attention_mask = (output_ids_tensor != self.tokenizer.pad_token_id).long()
|
| 139 |
+
|
| 140 |
+
return {
|
| 141 |
+
'input_ids': input_ids_tensor,
|
| 142 |
+
'input_attention_mask': input_attention_mask,
|
| 143 |
+
'output_ids': output_ids_tensor,
|
| 144 |
+
'output_attention_mask': output_attention_mask
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
"""
|
| 148 |
+
#cümleleri teker teker input ve output verilerinden çekmem gerekiyor
|
| 149 |
+
#def tokenize_and_pad_sequences(sequence_1,sequence2,)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
"""class DataPipeline:
|
| 153 |
+
def __init__(self, tokenizer_name='bert-base-uncased', max_length=100):
|
| 154 |
+
self.tokenizer_processor = TokenizerProcessor(tokenizer_name)
|
| 155 |
+
self.max_length = max_length
|
| 156 |
+
|
| 157 |
+
def prepare_data(self):
|
| 158 |
+
input_texts = Database.get_input_texts()
|
| 159 |
+
output_texts = Database.get_output_texts()
|
| 160 |
+
encoded_data = self.tokenizer_processor.pad_and_truncate_pairs(input_texts, output_texts, self.max_length)
|
| 161 |
+
return encoded_data
|
| 162 |
+
|
| 163 |
+
def tokenize_texts(self, texts):
|
| 164 |
+
return [self.tokenize(text) for text in texts]
|
| 165 |
+
|
| 166 |
+
def encode_texts(self, texts):
|
| 167 |
+
return [self.encode(text, self.max_length) for text in texts]
|
| 168 |
+
|
| 169 |
+
# Example Usage
|
| 170 |
+
if __name__ == "__main__":
|
| 171 |
+
data_pipeline = DataPipeline()
|
| 172 |
+
encoded_data = data_pipeline.prepare_data()
|
| 173 |
+
print(encoded_data)
|
| 174 |
+
"""
|
| 175 |
+
|
t5.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# pip install accelerate
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
|
| 5 |
+
tokenizer = T5Tokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
| 6 |
+
model = T5ForConditionalGeneration.from_pretrained("dbmdz/bert-base-turkish-cased", device_map="auto")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
input_text = "Başlık: Dijital Pazarlama, Alt başlıklar: dijital pazarlama nasıl yapılır?, dijital pazarlama ve gelişimi, dijital pazarlamanın iş hayatındaki yeri , anahtar kelimeler : pazarlama, ticaret, dijtalleşme, müşteri, ürün "
|
| 10 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
| 11 |
+
|
| 12 |
+
outputs = model.generate(input_ids)
|
| 13 |
+
print(tokenizer.decode(outputs[0]))
|