Spaces:
Build error
Build error
Upload 2 files
Browse files- .gitattributes +1 -0
- cleaned_processed_data.csv +3 -0
- combined.ipynb +378 -140
.gitattributes
CHANGED
|
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 36 |
combined_output.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
combined_texts.csv filter=lfs diff=lfs merge=lfs -text
|
| 38 |
processed_data.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 36 |
combined_output.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
combined_texts.csv filter=lfs diff=lfs merge=lfs -text
|
| 38 |
processed_data.csv filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
cleaned_processed_data.csv filter=lfs diff=lfs merge=lfs -text
|
cleaned_processed_data.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0827f1e2337aaf3e75ccbed508fd13dcb2d26612a1a55a8922d25e77fc54dd85
|
| 3 |
+
size 391939173
|
combined.ipynb
CHANGED
|
@@ -9,7 +9,7 @@
|
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"cell_type": "code",
|
| 12 |
-
"execution_count":
|
| 13 |
"metadata": {},
|
| 14 |
"outputs": [],
|
| 15 |
"source": [
|
|
@@ -40,7 +40,7 @@
|
|
| 40 |
},
|
| 41 |
{
|
| 42 |
"cell_type": "code",
|
| 43 |
-
"execution_count":
|
| 44 |
"metadata": {},
|
| 45 |
"outputs": [],
|
| 46 |
"source": [
|
|
@@ -138,15 +138,15 @@
|
|
| 138 |
]
|
| 139 |
},
|
| 140 |
{
|
| 141 |
-
"cell_type": "
|
| 142 |
-
"execution_count": null,
|
| 143 |
"metadata": {},
|
| 144 |
-
"
|
| 145 |
-
|
|
|
|
| 146 |
},
|
| 147 |
{
|
| 148 |
"cell_type": "code",
|
| 149 |
-
"execution_count":
|
| 150 |
"metadata": {},
|
| 151 |
"outputs": [],
|
| 152 |
"source": [
|
|
@@ -204,13 +204,6 @@
|
|
| 204 |
"save_to_csv(truncated_texts, output_file)\n"
|
| 205 |
]
|
| 206 |
},
|
| 207 |
-
{
|
| 208 |
-
"cell_type": "code",
|
| 209 |
-
"execution_count": null,
|
| 210 |
-
"metadata": {},
|
| 211 |
-
"outputs": [],
|
| 212 |
-
"source": []
|
| 213 |
-
},
|
| 214 |
{
|
| 215 |
"cell_type": "markdown",
|
| 216 |
"metadata": {},
|
|
@@ -220,79 +213,37 @@
|
|
| 220 |
},
|
| 221 |
{
|
| 222 |
"cell_type": "code",
|
| 223 |
-
"execution_count":
|
| 224 |
"metadata": {},
|
| 225 |
"outputs": [
|
| 226 |
{
|
| 227 |
-
"name": "
|
| 228 |
"output_type": "stream",
|
| 229 |
"text": [
|
| 230 |
-
"
|
| 231 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
]
|
| 233 |
},
|
| 234 |
-
{
|
| 235 |
-
"ename": "KeyboardInterrupt",
|
| 236 |
-
"evalue": "",
|
| 237 |
-
"output_type": "error",
|
| 238 |
-
"traceback": [
|
| 239 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
| 240 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
| 241 |
-
"Cell \u001b[1;32mIn[11], line 33\u001b[0m\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m top_keywords_per_document, top_tfidf_scores_per_document\n\u001b[0;32m 32\u001b[0m \u001b[38;5;66;03m# Anahtar kelimeleri çıkar ve sonuçları al\u001b[39;00m\n\u001b[1;32m---> 33\u001b[0m top_keywords_per_document, top_tfidf_scores_per_document \u001b[38;5;241m=\u001b[39m \u001b[43mextract_keywords_tfidf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcombined\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop_words_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_n\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 36\u001b[0m \u001b[38;5;66;03m# Sonuçları görüntüleme\u001b[39;00m\n\u001b[0;32m 37\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, (keywords, scores) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mzip\u001b[39m(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
| 242 |
-
"Cell \u001b[1;32mIn[11], line 21\u001b[0m, in \u001b[0;36mextract_keywords_tfidf\u001b[1;34m(combined, stop_words_list, top_n)\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m row \u001b[38;5;129;01min\u001b[39;00m X:\n\u001b[0;32m 20\u001b[0m tfidf_scores \u001b[38;5;241m=\u001b[39m row\u001b[38;5;241m.\u001b[39mtoarray()\u001b[38;5;241m.\u001b[39mflatten() \u001b[38;5;66;03m#değişkenleri düz bir değişken haline getirme\u001b[39;00m\n\u001b[1;32m---> 21\u001b[0m top_indices \u001b[38;5;241m=\u001b[39m \u001b[43mtfidf_scores\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margsort\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;241m-\u001b[39mtop_n:][::\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m] \u001b[38;5;66;03m# En yüksek n skoru bul\u001b[39;00m\n\u001b[0;32m 23\u001b[0m \u001b[38;5;66;03m#en yüksek skorlu kelimleri ve skorları bul\u001b[39;00m\n\u001b[0;32m 24\u001b[0m top_keywords \u001b[38;5;241m=\u001b[39m [feature_names[i] \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m top_indices]\n",
|
| 243 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
| 244 |
-
]
|
| 245 |
-
}
|
| 246 |
-
],
|
| 247 |
-
"source": [
|
| 248 |
-
"import csv\n",
|
| 249 |
-
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 250 |
-
"from joblib import Parallel, delayed\n",
|
| 251 |
-
"import pandas as pd\n",
|
| 252 |
-
"\n",
|
| 253 |
-
"df=pd.read_csv('combined_texts.csv')\n",
|
| 254 |
-
"combined= df['combined'].tolist()\n",
|
| 255 |
-
"def extract_keywords_tfidf(combined, stop_words_list,top_n=10):\n",
|
| 256 |
-
" \"\"\"TF-IDF ile anahtar kelimeleri çıkarır, stop words listesi ile birlikte kullanır.\"\"\"\n",
|
| 257 |
-
" vectorizer = TfidfVectorizer(stop_words=stop_words_list)\n",
|
| 258 |
-
" X = vectorizer.fit_transform(combined) #bunu csv den oku \n",
|
| 259 |
-
" feature_names = vectorizer.get_feature_names_out() #her kelimenin tf-ıdf vektöründeki karşılığını tutar \n",
|
| 260 |
-
" #sorted_keywords = [feature_names[i] for i in X.sum(axis=0).argsort()[0, ::-1]]\n",
|
| 261 |
-
" \n",
|
| 262 |
-
" top_keywords_per_document = [] #her döküman için en iyi keywordsleri alır\n",
|
| 263 |
-
" top_tfidf_scores_per_document = [] #tf-ıdf değeri en yüksek olan dökümanlar\n",
|
| 264 |
-
"\n",
|
| 265 |
-
" # Her dökümanı işleme\n",
|
| 266 |
-
" for row in X:\n",
|
| 267 |
-
" tfidf_scores = row.toarray().flatten() #değişkenleri düz bir değişken haline getirme\n",
|
| 268 |
-
" top_indices = tfidf_scores.argsort()[-top_n:][::-1] # En yüksek n skoru bul\n",
|
| 269 |
-
" \n",
|
| 270 |
-
" #en yüksek skorlu kelimleri ve skorları bul\n",
|
| 271 |
-
" top_keywords = [feature_names[i] for i in top_indices]\n",
|
| 272 |
-
" top_tfidf_scores = [tfidf_scores[i] for i in top_indices]\n",
|
| 273 |
-
" \n",
|
| 274 |
-
" top_keywords_per_document.append(top_keywords)\n",
|
| 275 |
-
" top_tfidf_scores_per_document.append(top_tfidf_scores)\n",
|
| 276 |
-
" \n",
|
| 277 |
-
" return top_keywords_per_document, top_tfidf_scores_per_document\n",
|
| 278 |
-
"\n",
|
| 279 |
-
"# Anahtar kelimeleri çıkar ve sonuçları al\n",
|
| 280 |
-
"top_keywords_per_document, top_tfidf_scores_per_document = extract_keywords_tfidf(combined, stop_words_list, top_n=10)\n",
|
| 281 |
-
" \n",
|
| 282 |
-
"\n",
|
| 283 |
-
"# Sonuçları görüntüleme\n",
|
| 284 |
-
"for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
| 285 |
-
" print(f\"Döküman {i+1}:\")\n",
|
| 286 |
-
" for keyword, score in zip(keywords, scores):\n",
|
| 287 |
-
" print(f\"{keyword}: {score:.4f}\")\n",
|
| 288 |
-
" print(\"\\n\")\n"
|
| 289 |
-
]
|
| 290 |
-
},
|
| 291 |
-
{
|
| 292 |
-
"cell_type": "code",
|
| 293 |
-
"execution_count": 5,
|
| 294 |
-
"metadata": {},
|
| 295 |
-
"outputs": [
|
| 296 |
{
|
| 297 |
"name": "stderr",
|
| 298 |
"output_type": "stream",
|
|
@@ -300,21 +251,6 @@
|
|
| 300 |
"c:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\sklearn\\feature_extraction\\text.py:406: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['leh'] not in stop_words.\n",
|
| 301 |
" warnings.warn(\n"
|
| 302 |
]
|
| 303 |
-
},
|
| 304 |
-
{
|
| 305 |
-
"ename": "KeyboardInterrupt",
|
| 306 |
-
"evalue": "",
|
| 307 |
-
"output_type": "error",
|
| 308 |
-
"traceback": [
|
| 309 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
| 310 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
| 311 |
-
"Cell \u001b[1;32mIn[5], line 53\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m top_keywords_per_document, top_tfidf_scores_per_document\n\u001b[0;32m 52\u001b[0m \u001b[38;5;66;03m# Anahtar kelimeleri çıkar ve sonuçları al\u001b[39;00m\n\u001b[1;32m---> 53\u001b[0m top_keywords_per_document, top_tfidf_scores_per_document \u001b[38;5;241m=\u001b[39m \u001b[43mextract_keywords_tfidf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcombined\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop_words_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_n\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;66;03m# Sonuçları görüntüleme\u001b[39;00m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, (keywords, scores) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mzip\u001b[39m(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
| 312 |
-
"Cell \u001b[1;32mIn[5], line 45\u001b[0m, in \u001b[0;36mextract_keywords_tfidf\u001b[1;34m(combined, stop_words_list, top_n, n_jobs)\u001b[0m\n\u001b[0;32m 42\u001b[0m top_tfidf_scores \u001b[38;5;241m=\u001b[39m [tfidf_scores[i] \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m top_indices]\n\u001b[0;32m 43\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m top_keywords, top_tfidf_scores\n\u001b[1;32m---> 45\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mParallel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_jobs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_row\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrow\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrow\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 47\u001b[0m \u001b[38;5;66;03m# Sonuçları listelere ayırma\u001b[39;00m\n\u001b[0;32m 48\u001b[0m top_keywords_per_document, top_tfidf_scores_per_document \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mzip\u001b[39m(\u001b[38;5;241m*\u001b[39mresults)\n",
|
| 313 |
-
"File \u001b[1;32mc:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\joblib\\parallel.py:2007\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[1;34m(self, iterable)\u001b[0m\n\u001b[0;32m 2001\u001b[0m \u001b[38;5;66;03m# The first item from the output is blank, but it makes the interpreter\u001b[39;00m\n\u001b[0;32m 2002\u001b[0m \u001b[38;5;66;03m# progress until it enters the Try/Except block of the generator and\u001b[39;00m\n\u001b[0;32m 2003\u001b[0m \u001b[38;5;66;03m# reaches the first `yield` statement. This starts the asynchronous\u001b[39;00m\n\u001b[0;32m 2004\u001b[0m \u001b[38;5;66;03m# dispatch of the tasks to the workers.\u001b[39;00m\n\u001b[0;32m 2005\u001b[0m \u001b[38;5;28mnext\u001b[39m(output)\n\u001b[1;32m-> 2007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m output \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreturn_generator \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43moutput\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 314 |
-
"File \u001b[1;32mc:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\joblib\\parallel.py:1650\u001b[0m, in \u001b[0;36mParallel._get_outputs\u001b[1;34m(self, iterator, pre_dispatch)\u001b[0m\n\u001b[0;32m 1647\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[0;32m 1649\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backend\u001b[38;5;241m.\u001b[39mretrieval_context():\n\u001b[1;32m-> 1650\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_retrieve()\n\u001b[0;32m 1652\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mGeneratorExit\u001b[39;00m:\n\u001b[0;32m 1653\u001b[0m \u001b[38;5;66;03m# The generator has been garbage collected before being fully\u001b[39;00m\n\u001b[0;32m 1654\u001b[0m \u001b[38;5;66;03m# consumed. This aborts the remaining tasks if possible and warn\u001b[39;00m\n\u001b[0;32m 1655\u001b[0m \u001b[38;5;66;03m# the user if necessary.\u001b[39;00m\n\u001b[0;32m 1656\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
|
| 315 |
-
"File \u001b[1;32mc:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\joblib\\parallel.py:1762\u001b[0m, in \u001b[0;36mParallel._retrieve\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1757\u001b[0m \u001b[38;5;66;03m# If the next job is not ready for retrieval yet, we just wait for\u001b[39;00m\n\u001b[0;32m 1758\u001b[0m \u001b[38;5;66;03m# async callbacks to progress.\u001b[39;00m\n\u001b[0;32m 1759\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ((\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jobs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m\n\u001b[0;32m 1760\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jobs[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mget_status(\n\u001b[0;32m 1761\u001b[0m timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtimeout) \u001b[38;5;241m==\u001b[39m TASK_PENDING)):\n\u001b[1;32m-> 1762\u001b[0m \u001b[43mtime\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msleep\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0.01\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1763\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[0;32m 1765\u001b[0m \u001b[38;5;66;03m# We need to be careful: the job list can be filling up as\u001b[39;00m\n\u001b[0;32m 1766\u001b[0m \u001b[38;5;66;03m# we empty it and Python list are not thread-safe by\u001b[39;00m\n\u001b[0;32m 1767\u001b[0m \u001b[38;5;66;03m# default hence the use of the lock\u001b[39;00m\n",
|
| 316 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
| 317 |
-
]
|
| 318 |
}
|
| 319 |
],
|
| 320 |
"source": [
|
|
@@ -322,10 +258,13 @@
|
|
| 322 |
"import pandas as pd\n",
|
| 323 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 324 |
"from joblib import Parallel, delayed\n",
|
|
|
|
|
|
|
|
|
|
| 325 |
"\n",
|
| 326 |
"\n",
|
| 327 |
"# CSV dosyasını okuma\n",
|
| 328 |
-
"df = pd.read_csv('
|
| 329 |
"combined = df['combined'].tolist()\n",
|
| 330 |
"\n",
|
| 331 |
"\n",
|
|
@@ -371,18 +310,18 @@
|
|
| 371 |
"\n",
|
| 372 |
"def clean_data(file_path):\n",
|
| 373 |
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
| 374 |
-
" with open(file_path, 'r') as file:\n",
|
| 375 |
" raw_text = file.read()\n",
|
| 376 |
" \n",
|
| 377 |
" data = parse_text(raw_text)\n",
|
| 378 |
" \n",
|
| 379 |
" # Veri çerçevesi oluştur\n",
|
| 380 |
-
" df = pd.DataFrame(data
|
| 381 |
" \n",
|
| 382 |
" return df\n",
|
| 383 |
"\n",
|
| 384 |
"# CSV dosyasını temizleyip düzenli bir DataFrame oluştur\n",
|
| 385 |
-
"cleaned_df = clean_data('
|
| 386 |
"\n",
|
| 387 |
"# Düzenlenmiş veriyi kontrol et\n",
|
| 388 |
"print(cleaned_df.head())\n",
|
|
@@ -405,7 +344,7 @@
|
|
| 405 |
" top_tfidf_scores = [tfidf_scores[i] for i in top_indices]\n",
|
| 406 |
" return top_keywords, top_tfidf_scores\n",
|
| 407 |
"\n",
|
| 408 |
-
" results = Parallel(n_jobs=n_jobs)(delayed(process_row)(row) for row in X)\n",
|
| 409 |
"\n",
|
| 410 |
" # Sonuçları listelere ayırma\n",
|
| 411 |
" top_keywords_per_document, top_tfidf_scores_per_document = zip(*results)\n",
|
|
@@ -413,14 +352,81 @@
|
|
| 413 |
" return top_keywords_per_document, top_tfidf_scores_per_document\n",
|
| 414 |
"\n",
|
| 415 |
"# Anahtar kelimeleri çıkar ve sonuçları al\n",
|
| 416 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
"\n",
|
|
|
|
|
|
|
| 418 |
"# Sonuçları görüntüleme\n",
|
| 419 |
"for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
| 420 |
" print(f\"Döküman {i+1}:\")\n",
|
| 421 |
" for keyword, score in zip(keywords, scores):\n",
|
| 422 |
" print(f\"{keyword}: {score:.4f}\")\n",
|
| 423 |
-
" print(\"\\n\")\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
]
|
| 425 |
},
|
| 426 |
{
|
|
@@ -437,23 +443,18 @@
|
|
| 437 |
"keyword_embeddings = model.encode(top_keywords_per_document)\n"
|
| 438 |
]
|
| 439 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
{
|
| 441 |
"cell_type": "code",
|
| 442 |
-
"execution_count":
|
| 443 |
"metadata": {},
|
| 444 |
-
"outputs": [
|
| 445 |
-
{
|
| 446 |
-
"name": "stdout",
|
| 447 |
-
"output_type": "stream",
|
| 448 |
-
"text": [
|
| 449 |
-
"Keyword: bir, Similarity: 0.26726124191242445\n",
|
| 450 |
-
"Keyword: anahtar, Similarity: 0.26726124191242445\n",
|
| 451 |
-
"Keyword: kelimeleri, Similarity: 0.26726124191242445\n",
|
| 452 |
-
"Keyword: test, Similarity: 0.26726124191242445\n",
|
| 453 |
-
"Keyword: başka, Similarity: 0.0\n"
|
| 454 |
-
]
|
| 455 |
-
}
|
| 456 |
-
],
|
| 457 |
"source": [
|
| 458 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 459 |
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
|
@@ -481,6 +482,8 @@
|
|
| 481 |
"\n",
|
| 482 |
"# Örnek metin ve anahtar kelimeler\n",
|
| 483 |
"#combined verileri \n",
|
|
|
|
|
|
|
| 484 |
"text = \"Bu bir örnek metindir ve bu metin üzerinde anahtar kelimeleri test ediyoruz.\"\n",
|
| 485 |
"keywords = [\"başka\", \"bir\", \"anahtar\", \"kelimeleri\", \"test\"] #bu keywordsler tf-değerinden alınarak arraylere çevrilmeli \n",
|
| 486 |
" \n",
|
|
@@ -497,20 +500,79 @@
|
|
| 497 |
},
|
| 498 |
{
|
| 499 |
"cell_type": "code",
|
| 500 |
-
"execution_count":
|
| 501 |
"metadata": {},
|
| 502 |
-
"outputs": [
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
"source": [
|
| 515 |
"\n",
|
| 516 |
"# BERT Tokenizer ve Model'i yükleyin\n",
|
|
@@ -575,17 +637,9 @@
|
|
| 575 |
},
|
| 576 |
{
|
| 577 |
"cell_type": "code",
|
| 578 |
-
"execution_count":
|
| 579 |
"metadata": {},
|
| 580 |
-
"outputs": [
|
| 581 |
-
{
|
| 582 |
-
"name": "stdout",
|
| 583 |
-
"output_type": "stream",
|
| 584 |
-
"text": [
|
| 585 |
-
"combined metinler 'combined_texts.csv' dosyasına başarıyla yazıld��.\n"
|
| 586 |
-
]
|
| 587 |
-
}
|
| 588 |
-
],
|
| 589 |
"source": [
|
| 590 |
"#mongodb üzerinden combined_textleri çek\n",
|
| 591 |
"import csv\n",
|
|
@@ -824,13 +878,197 @@
|
|
| 824 |
" print(f\"Keyword: {keyword}, Similarity: {similarity}\")"
|
| 825 |
]
|
| 826 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 827 |
{
|
| 828 |
"cell_type": "code",
|
| 829 |
"execution_count": null,
|
| 830 |
"metadata": {},
|
| 831 |
"outputs": [],
|
| 832 |
"source": [
|
| 833 |
-
" "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 834 |
]
|
| 835 |
}
|
| 836 |
],
|
|
|
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
"metadata": {},
|
| 14 |
"outputs": [],
|
| 15 |
"source": [
|
|
|
|
| 40 |
},
|
| 41 |
{
|
| 42 |
"cell_type": "code",
|
| 43 |
+
"execution_count": 2,
|
| 44 |
"metadata": {},
|
| 45 |
"outputs": [],
|
| 46 |
"source": [
|
|
|
|
| 138 |
]
|
| 139 |
},
|
| 140 |
{
|
| 141 |
+
"cell_type": "markdown",
|
|
|
|
| 142 |
"metadata": {},
|
| 143 |
+
"source": [
|
| 144 |
+
"Metinleri Kısaltma Fonksiyonu (processed_data kaydetme)"
|
| 145 |
+
]
|
| 146 |
},
|
| 147 |
{
|
| 148 |
"cell_type": "code",
|
| 149 |
+
"execution_count": null,
|
| 150 |
"metadata": {},
|
| 151 |
"outputs": [],
|
| 152 |
"source": [
|
|
|
|
| 204 |
"save_to_csv(truncated_texts, output_file)\n"
|
| 205 |
]
|
| 206 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
{
|
| 208 |
"cell_type": "markdown",
|
| 209 |
"metadata": {},
|
|
|
|
| 213 |
},
|
| 214 |
{
|
| 215 |
"cell_type": "code",
|
| 216 |
+
"execution_count": 9,
|
| 217 |
"metadata": {},
|
| 218 |
"outputs": [
|
| 219 |
{
|
| 220 |
+
"name": "stdout",
|
| 221 |
"output_type": "stream",
|
| 222 |
"text": [
|
| 223 |
+
" 0 1 2 3 4 5 \\\n",
|
| 224 |
+
"0 1992 Hitachi Football League 6 0 \n",
|
| 225 |
+
"1 6 0 None None \n",
|
| 226 |
+
"2 1993 rowspan=\"\"3\"\" Kashiwa Reysol rowspan=\"\"2\"\" Football League \n",
|
| 227 |
+
"3 1994 0 0 0 0 \n",
|
| 228 |
+
"4 1995 J1 League 17 1 2 \n",
|
| 229 |
+
"\n",
|
| 230 |
+
" 6 7 8 9 ... 204 205 206 207 \\\n",
|
| 231 |
+
"0 colspan=\"\"2\"\" None None None ... None None None None \n",
|
| 232 |
+
"1 None None None None ... None None None None \n",
|
| 233 |
+
"2 12 5 1 0 ... None None None None \n",
|
| 234 |
+
"3 0 0 0 0 ... None None None None \n",
|
| 235 |
+
"4 0 colspan=\"\"2\"\" None None ... None None None None \n",
|
| 236 |
+
"\n",
|
| 237 |
+
" 208 209 210 211 212 213 \n",
|
| 238 |
+
"0 None None None None None None \n",
|
| 239 |
+
"1 None None None None None None \n",
|
| 240 |
+
"2 None None None None None None \n",
|
| 241 |
+
"3 None None None None None None \n",
|
| 242 |
+
"4 None None None None None None \n",
|
| 243 |
+
"\n",
|
| 244 |
+
"[5 rows x 214 columns]\n"
|
| 245 |
]
|
| 246 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
{
|
| 248 |
"name": "stderr",
|
| 249 |
"output_type": "stream",
|
|
|
|
| 251 |
"c:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\sklearn\\feature_extraction\\text.py:406: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['leh'] not in stop_words.\n",
|
| 252 |
" warnings.warn(\n"
|
| 253 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
}
|
| 255 |
],
|
| 256 |
"source": [
|
|
|
|
| 258 |
"import pandas as pd\n",
|
| 259 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 260 |
"from joblib import Parallel, delayed\n",
|
| 261 |
+
"from tqdm import tqdm\n",
|
| 262 |
+
"import csv\n",
|
| 263 |
+
"\n",
|
| 264 |
"\n",
|
| 265 |
"\n",
|
| 266 |
"# CSV dosyasını okuma\n",
|
| 267 |
+
"df = pd.read_csv('processed_data.csv')\n",
|
| 268 |
"combined = df['combined'].tolist()\n",
|
| 269 |
"\n",
|
| 270 |
"\n",
|
|
|
|
| 310 |
"\n",
|
| 311 |
"def clean_data(file_path):\n",
|
| 312 |
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
| 313 |
+
" with open(file_path, 'r',encoding='utf-8') as file:\n",
|
| 314 |
" raw_text = file.read()\n",
|
| 315 |
" \n",
|
| 316 |
" data = parse_text(raw_text)\n",
|
| 317 |
" \n",
|
| 318 |
" # Veri çerçevesi oluştur\n",
|
| 319 |
+
" df = pd.DataFrame(data)\n",
|
| 320 |
" \n",
|
| 321 |
" return df\n",
|
| 322 |
"\n",
|
| 323 |
"# CSV dosyasını temizleyip düzenli bir DataFrame oluştur\n",
|
| 324 |
+
"cleaned_df = clean_data('processed_data.csv')\n",
|
| 325 |
"\n",
|
| 326 |
"# Düzenlenmiş veriyi kontrol et\n",
|
| 327 |
"print(cleaned_df.head())\n",
|
|
|
|
| 344 |
" top_tfidf_scores = [tfidf_scores[i] for i in top_indices]\n",
|
| 345 |
" return top_keywords, top_tfidf_scores\n",
|
| 346 |
"\n",
|
| 347 |
+
" results = Parallel(n_jobs=n_jobs)(delayed(process_row)(row) for row in tqdm(X))\n",
|
| 348 |
"\n",
|
| 349 |
" # Sonuçları listelere ayırma\n",
|
| 350 |
" top_keywords_per_document, top_tfidf_scores_per_document = zip(*results)\n",
|
|
|
|
| 352 |
" return top_keywords_per_document, top_tfidf_scores_per_document\n",
|
| 353 |
"\n",
|
| 354 |
"# Anahtar kelimeleri çıkar ve sonuçları al\n",
|
| 355 |
+
"# İlk 100 dökümanı işleyin\n",
|
| 356 |
+
"combined_sample = combined[:400000]\n",
|
| 357 |
+
"top_keywords_per_document, top_tfidf_scores_per_document = extract_keywords_tfidf(combined_sample, stop_words_list, top_n=10, n_jobs=-1)\n",
|
| 358 |
+
"#n__jobs ın 2 olması aynı anda iki iş parçacığı yani iki işlem yanı anda yürütülür \n",
|
| 359 |
+
"#n__jobs ın -1 olması maksimum işlemci sayısının kullanılmasıdır.\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"#Sonuçları CSV dosyasına kaydetme\n",
|
| 362 |
+
"with open('keywords_with_scores.csv', mode='w', newline='', encoding='utf-8') as file:\n",
|
| 363 |
+
" writer = csv.writer(file)\n",
|
| 364 |
+
" # Başlık satırını yazma\n",
|
| 365 |
+
" writer.writerow(['Document_Index'] + [f'Keyword_{i+1}' for i in range(10)] + [f'Score_{i+1}' for i in range(10)])\n",
|
| 366 |
+
" \n",
|
| 367 |
+
" # Her döküman için anahtar kelimeler ve skorları yazma\n",
|
| 368 |
+
" for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
| 369 |
+
" row = [i+1] + keywords + [f\"{score:.4f}\" for score in scores]\n",
|
| 370 |
+
" writer.writerow(row)\n",
|
| 371 |
"\n",
|
| 372 |
+
"print(\"Sonuçlar 'keywords_with_scores.csv' dosyasına kaydedildi.\")\n",
|
| 373 |
+
"\"\"\"\n",
|
| 374 |
"# Sonuçları görüntüleme\n",
|
| 375 |
"for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
| 376 |
" print(f\"Döküman {i+1}:\")\n",
|
| 377 |
" for keyword, score in zip(keywords, scores):\n",
|
| 378 |
" print(f\"{keyword}: {score:.4f}\")\n",
|
| 379 |
+
" print(\"\\n\")\n",
|
| 380 |
+
"\"\"\""
|
| 381 |
+
]
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"cell_type": "markdown",
|
| 385 |
+
"metadata": {},
|
| 386 |
+
"source": [
|
| 387 |
+
"Buradaki keywords ve skorlar yukarıda çekildi."
|
| 388 |
+
]
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"cell_type": "code",
|
| 392 |
+
"execution_count": null,
|
| 393 |
+
"metadata": {},
|
| 394 |
+
"outputs": [],
|
| 395 |
+
"source": [
|
| 396 |
+
"import pandas as pd\n",
|
| 397 |
+
"import csv\n",
|
| 398 |
+
"\n",
|
| 399 |
+
"# Anahtar kelimeleri ve TF-IDF skorlarını çekme\n",
|
| 400 |
+
"top_keywords_per_document, top_tfidf_scores_per_document = extract_keywords_tfidf(combined, stop_words_list, top_n=10, n_jobs=-1)\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"# Sonuçları tablo şeklinde hazırlama\n",
|
| 403 |
+
"results_top = []\n",
|
| 404 |
+
"for keywords, scores in zip(top_keywords_per_document, top_tfidf_scores_per_document):\n",
|
| 405 |
+
" row = {}\n",
|
| 406 |
+
" for i, (keyword, score) in enumerate(zip(keywords, scores)):\n",
|
| 407 |
+
" row[f'Keyword_{i+1}'] = keyword\n",
|
| 408 |
+
" row[f'Score_{i+1}'] = score\n",
|
| 409 |
+
" results_top.append(row)\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"# Sonuçları DataFrame'e dönüştürme\n",
|
| 412 |
+
"df = pd.DataFrame(results_top)\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"# Sonuçları CSV'ye kaydetme\n",
|
| 415 |
+
"df.to_csv('keywords_with_scores.csv', index=False, encoding='utf-8')\n",
|
| 416 |
+
"\n",
|
| 417 |
+
"chunksize = 1000 # Küçük bir parça boyutu belirleyin\n",
|
| 418 |
+
"for i in range(0, len(df), chunksize):\n",
|
| 419 |
+
" df.iloc[i:i+chunksize].to_csv('keywords_with_scores.csv', mode='a', header=(i==0), index=False, encoding='utf-8')\n",
|
| 420 |
+
"\n",
|
| 421 |
+
"# Sonuçları terminalde görüntüleme\n",
|
| 422 |
+
"print(df.head())\n"
|
| 423 |
+
]
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"cell_type": "markdown",
|
| 427 |
+
"metadata": {},
|
| 428 |
+
"source": [
|
| 429 |
+
"Encoding yapmak için"
|
| 430 |
]
|
| 431 |
},
|
| 432 |
{
|
|
|
|
| 443 |
"keyword_embeddings = model.encode(top_keywords_per_document)\n"
|
| 444 |
]
|
| 445 |
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "markdown",
|
| 448 |
+
"metadata": {},
|
| 449 |
+
"source": [
|
| 450 |
+
"Text ve keywords similarity denemesi"
|
| 451 |
+
]
|
| 452 |
+
},
|
| 453 |
{
|
| 454 |
"cell_type": "code",
|
| 455 |
+
"execution_count": null,
|
| 456 |
"metadata": {},
|
| 457 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
"source": [
|
| 459 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 460 |
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
|
|
|
| 482 |
"\n",
|
| 483 |
"# Örnek metin ve anahtar kelimeler\n",
|
| 484 |
"#combined verileri \n",
|
| 485 |
+
"\n",
|
| 486 |
+
"\n",
|
| 487 |
"text = \"Bu bir örnek metindir ve bu metin üzerinde anahtar kelimeleri test ediyoruz.\"\n",
|
| 488 |
"keywords = [\"başka\", \"bir\", \"anahtar\", \"kelimeleri\", \"test\"] #bu keywordsler tf-değerinden alınarak arraylere çevrilmeli \n",
|
| 489 |
" \n",
|
|
|
|
| 500 |
},
|
| 501 |
{
|
| 502 |
"cell_type": "code",
|
| 503 |
+
"execution_count": null,
|
| 504 |
"metadata": {},
|
| 505 |
+
"outputs": [],
|
| 506 |
+
"source": [
|
| 507 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
| 508 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
| 509 |
+
"# Örnek metin ve anahtar kelimeler\n",
|
| 510 |
+
"#combined verileri \n",
|
| 511 |
+
"def get_text(file_path='processed_data.csv'):\n",
|
| 512 |
+
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
| 513 |
+
" with open(file_path, 'r',encoding='utf-8') as file:\n",
|
| 514 |
+
" raw_text = file.read()\n",
|
| 515 |
+
" \n",
|
| 516 |
+
" text = parse_text(raw_text)\n",
|
| 517 |
+
" \n",
|
| 518 |
+
" # Veri çerçevesi oluştur\n",
|
| 519 |
+
" df_text = pd.DataFrame(text)\n",
|
| 520 |
+
" \n",
|
| 521 |
+
" return df_text\n",
|
| 522 |
+
"\n",
|
| 523 |
+
"def get_keywords(file_path='keywords_with_scores.csv'):\n",
|
| 524 |
+
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
| 525 |
+
" with open(file_path, 'r',encoding='utf-8') as file:\n",
|
| 526 |
+
" raw_text = file.read()\n",
|
| 527 |
+
" \n",
|
| 528 |
+
" keywords = parse_text(raw_text)\n",
|
| 529 |
+
" \n",
|
| 530 |
+
" # Veri çerçevesi oluştur\n",
|
| 531 |
+
" df_keyword = pd.DataFrame(keywords)\n",
|
| 532 |
+
" \n",
|
| 533 |
+
" return df_keyword\n",
|
| 534 |
+
"\n",
|
| 535 |
+
"\n",
|
| 536 |
+
"def calculate_keyword_similarity(text, keywords):\n",
|
| 537 |
+
" # TF-IDF matrisini oluştur\n",
|
| 538 |
+
" tfidf_vectorizer = TfidfVectorizer()\n",
|
| 539 |
+
"\n",
|
| 540 |
+
" #texti ve anahtar kelimeleri tf-ıdf vektörlerine dönüştür\n",
|
| 541 |
+
" text_tfidf = tfidf_vectorizer.fit_transform(text) #burayı combined sütunundan almalıyım\n",
|
| 542 |
+
" #benzerlik hesaplama \n",
|
| 543 |
+
" similarity_array = []\n",
|
| 544 |
+
" for keyword in keywords:\n",
|
| 545 |
+
" # Her bir anahtar kelimeyi TF-IDF vektörüne dönüştür\n",
|
| 546 |
+
" keyword_tfidf = tfidf_vectorizer.transform([keyword]) #keywordleri teker teker alma fonksiyonu\n",
|
| 547 |
+
" \n",
|
| 548 |
+
" # Cosine similarity ile benzerlik hesapla\n",
|
| 549 |
+
" similarity = cosine_similarity(text_tfidf, keyword_tfidf)[0][0]\n",
|
| 550 |
+
" \n",
|
| 551 |
+
" # Anahtar kelime ve benzerlik skorunu kaydet\n",
|
| 552 |
+
" similarity_array.append((keyword, similarity))\n",
|
| 553 |
+
" \n",
|
| 554 |
+
" return similarity_array\n",
|
| 555 |
+
" \n",
|
| 556 |
+
"\n",
|
| 557 |
+
"\n",
|
| 558 |
+
"\n",
|
| 559 |
+
" \n",
|
| 560 |
+
"# Uygunluk skorunu hesapla\n",
|
| 561 |
+
"similarity_results = calculate_keyword_similarity(text, keywords)\n",
|
| 562 |
+
"top_5_keywords = sorted(similarity_results, key=lambda x: x[1], reverse=True)[:5]\n",
|
| 563 |
+
"# Her bir anahtar kelimenin uyumluluk skorunu yazdır\n",
|
| 564 |
+
"\n",
|
| 565 |
+
"for keyword, similarity in top_5_keywords:\n",
|
| 566 |
+
" print(f\"Keyword: {keyword}, Similarity: {similarity}\")\n",
|
| 567 |
+
" #print(f\"Keyword: '{keyword}' - Relevance score: {score:.4f}\")\n",
|
| 568 |
+
"\n"
|
| 569 |
+
]
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"cell_type": "code",
|
| 573 |
+
"execution_count": null,
|
| 574 |
+
"metadata": {},
|
| 575 |
+
"outputs": [],
|
| 576 |
"source": [
|
| 577 |
"\n",
|
| 578 |
"# BERT Tokenizer ve Model'i yükleyin\n",
|
|
|
|
| 637 |
},
|
| 638 |
{
|
| 639 |
"cell_type": "code",
|
| 640 |
+
"execution_count": null,
|
| 641 |
"metadata": {},
|
| 642 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 643 |
"source": [
|
| 644 |
"#mongodb üzerinden combined_textleri çek\n",
|
| 645 |
"import csv\n",
|
|
|
|
| 878 |
" print(f\"Keyword: {keyword}, Similarity: {similarity}\")"
|
| 879 |
]
|
| 880 |
},
|
| 881 |
+
{
|
| 882 |
+
"cell_type": "markdown",
|
| 883 |
+
"metadata": {},
|
| 884 |
+
"source": [
|
| 885 |
+
"Title değerini bir dataframe' e dönüştürür."
|
| 886 |
+
]
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"cell_type": "code",
|
| 890 |
+
"execution_count": 4,
|
| 891 |
+
"metadata": {},
|
| 892 |
+
"outputs": [
|
| 893 |
+
{
|
| 894 |
+
"name": "stdout",
|
| 895 |
+
"output_type": "stream",
|
| 896 |
+
"text": [
|
| 897 |
+
"metin başlıkları 'titles_texts.csv' dosyasına başarıyla yazıldı.\n",
|
| 898 |
+
" title\n",
|
| 899 |
+
"0 Pşıqo Ahecaqo\n",
|
| 900 |
+
"1 Craterolophinae\n",
|
| 901 |
+
"2 Notocrabro\n",
|
| 902 |
+
"3 Ibrahim Sissoko\n",
|
| 903 |
+
"4 Salah Cedid\n"
|
| 904 |
+
]
|
| 905 |
+
}
|
| 906 |
+
],
|
| 907 |
+
"source": [
|
| 908 |
+
"from pymongo import MongoClient\n",
|
| 909 |
+
"import pandas as pd\n",
|
| 910 |
+
"import csv\n",
|
| 911 |
+
"\n",
|
| 912 |
+
"# MongoDB'ye bağlanma\n",
|
| 913 |
+
"\n",
|
| 914 |
+
"def get_titles(database_name='combined_text', collection_name='text', host='localhost', port=27017,batch_size=1000,output_file='titles_texts.csv'):\n",
|
| 915 |
+
" client = MongoClient(f'mongodb://{host}:{port}/')\n",
|
| 916 |
+
" db = client[database_name]\n",
|
| 917 |
+
" collection = db[collection_name]\n",
|
| 918 |
+
" \n",
|
| 919 |
+
" #toplam döküman sayısını al\n",
|
| 920 |
+
" total_documents = collection.count_documents({})\n",
|
| 921 |
+
" #batch_documents = []\n",
|
| 922 |
+
"\n",
|
| 923 |
+
"\n",
|
| 924 |
+
" # MongoDB'den sadece title alanlarını çekme\n",
|
| 925 |
+
" titles = collection.find({}, {\"_id\": 0, \"title\": 1})\n",
|
| 926 |
+
"\n",
|
| 927 |
+
" # Verileri liste haline getirme ve DataFrame'e dönüştürme\n",
|
| 928 |
+
" df = pd.DataFrame(list(titles))\n",
|
| 929 |
+
"\n",
|
| 930 |
+
" \n",
|
| 931 |
+
" # CSV dosyasını aç ve yazmaya hazırla\n",
|
| 932 |
+
" with open(output_file, mode='w', newline='', encoding='utf-8') as file:\n",
|
| 933 |
+
" writer = csv.writer(file)\n",
|
| 934 |
+
" writer.writerow([\"titles\"]) # CSV başlığı\n",
|
| 935 |
+
"\n",
|
| 936 |
+
" # Belirtilen batch_size kadar dökümanları almak için döngü\n",
|
| 937 |
+
" for i in range(0, total_documents, batch_size):\n",
|
| 938 |
+
" cursor = collection.find({}, {\"title\":1, \"_id\": 0}).skip(i).limit(batch_size)\n",
|
| 939 |
+
" combined_texts = [doc['title'] for doc in cursor if 'title' in doc] #combined sütununa ilişkin verileri çeker \n",
|
| 940 |
+
"\n",
|
| 941 |
+
" # Batch verilerini CSV'ye yaz\n",
|
| 942 |
+
" with open(output_file, mode='a', newline='', encoding='utf-8') as file:\n",
|
| 943 |
+
" writer = csv.writer(file)\n",
|
| 944 |
+
" \n",
|
| 945 |
+
" for text in combined_texts:\n",
|
| 946 |
+
" writer.writerow([text])\n",
|
| 947 |
+
" \n",
|
| 948 |
+
" \n",
|
| 949 |
+
"\n",
|
| 950 |
+
" print(f\"metin başlıkları '{output_file}' dosyasına başarıyla yazıldı.\")\n",
|
| 951 |
+
"\n",
|
| 952 |
+
" # DataFrame'i görüntüleme\n",
|
| 953 |
+
" print(df.head())\n",
|
| 954 |
+
"\n",
|
| 955 |
+
"# Dökümanları CSV dosyasına yazdır\n",
|
| 956 |
+
"text=get_titles(batch_size=5000)\n",
|
| 957 |
+
" #batch_documents.extend((combined_texts, len(combined_texts)))\n",
|
| 958 |
+
" #append fonksiyonu listenin içerisine tek bir eleman gibi ekler yani list1 = [1, 2, 3, [4, 5]]\n",
|
| 959 |
+
" #fakat extend fonksiyonu list1 = [1, 2, 3, 4, 5] bir listeye yeni bir liste eklemeyi teker teker gerçekleştirir.\n",
|
| 960 |
+
" #return batch_documents\n",
|
| 961 |
+
"\n",
|
| 962 |
+
"# Dökümanları ve döküman sayısını batch olarak çekin\n",
|
| 963 |
+
"#combined_texts = mongo_db_combined_texts(batch_size=1000)\n",
|
| 964 |
+
"\n",
|
| 965 |
+
"# Her batch'i ayrı ayrı işleyebilirsiniz\n",
|
| 966 |
+
"#print(f\"Toplam döküman sayısı:{len(combined_texts)}\")\n",
|
| 967 |
+
"\n",
|
| 968 |
+
"#for index, text in enumerate (combined_texts[:10]):\n",
|
| 969 |
+
" #print(f\"Döküman {index + 1}: {text}\")\n",
|
| 970 |
+
"\n",
|
| 971 |
+
"#print(combined_texts)\n",
|
| 972 |
+
"\n",
|
| 973 |
+
" \n",
|
| 974 |
+
"\n",
|
| 975 |
+
"\n",
|
| 976 |
+
"\n"
|
| 977 |
+
]
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"cell_type": "markdown",
|
| 981 |
+
"metadata": {},
|
| 982 |
+
"source": [
|
| 983 |
+
"Veri güncelleme "
|
| 984 |
+
]
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"cell_type": "code",
|
| 988 |
+
"execution_count": 6,
|
| 989 |
+
"metadata": {},
|
| 990 |
+
"outputs": [
|
| 991 |
+
{
|
| 992 |
+
"name": "stdout",
|
| 993 |
+
"output_type": "stream",
|
| 994 |
+
"text": [
|
| 995 |
+
" Document_Index Keyword_1 Keyword_2 Keyword_3 \\\n",
|
| 996 |
+
"0 1 ahecaqo pşıqo çerkes \n",
|
| 997 |
+
"1 2 craterolophinae depastridae craterolophus \n",
|
| 998 |
+
"2 3 notocrabro crabronina oymağına \n",
|
| 999 |
+
"3 4 sissoko wolfsburg panathinaikos \n",
|
| 1000 |
+
"4 5 baas cedid salah \n",
|
| 1001 |
+
"\n",
|
| 1002 |
+
" Keyword_4 Keyword_5 Keyword_6 Keyword_7 Keyword_8 Keyword_9 \\\n",
|
| 1003 |
+
"0 çerkesya 1777 savaşına lakapları qo bjeduğ \n",
|
| 1004 |
+
"1 altfamilyasıdır clark 1863 cinsler taksonomi 2023 \n",
|
| 1005 |
+
"2 cinstir bağlantılar kaynakça ghost ghetto ghez \n",
|
| 1006 |
+
"3 konyaspor deportivo étienne coruña kiralandı imzaladı \n",
|
| 1007 |
+
"4 1970 1993 1926 siyasetçiler fraksiyon bitar \n",
|
| 1008 |
+
"\n",
|
| 1009 |
+
" ... Score_1 Score_2 Score_3 Score_4 Score_5 Score_6 Score_7 Score_8 \\\n",
|
| 1010 |
+
"0 ... 0.5162 0.4130 0.3481 0.1903 0.1850 0.1740 0.1032 0.1032 \n",
|
| 1011 |
+
"1 ... 0.7030 0.4687 0.2343 0.2052 0.2011 0.1808 0.1745 0.1583 \n",
|
| 1012 |
+
"2 ... 0.6762 0.6762 0.2125 0.1782 0.0714 0.0588 0.0000 0.0000 \n",
|
| 1013 |
+
"3 ... 0.8107 0.2490 0.1245 0.1159 0.1159 0.1139 0.1121 0.1065 \n",
|
| 1014 |
+
"4 ... 0.5065 0.4892 0.2026 0.1679 0.1610 0.1403 0.1205 0.1062 \n",
|
| 1015 |
+
"\n",
|
| 1016 |
+
" Score_9 Score_10 \n",
|
| 1017 |
+
"0 0.1032 0.1032 \n",
|
| 1018 |
+
"1 0.1555 0.1458 \n",
|
| 1019 |
+
"2 0.0000 0.0000 \n",
|
| 1020 |
+
"3 0.0913 0.0896 \n",
|
| 1021 |
+
"4 0.1062 0.1062 \n",
|
| 1022 |
+
"\n",
|
| 1023 |
+
"[5 rows x 21 columns]\n"
|
| 1024 |
+
]
|
| 1025 |
+
}
|
| 1026 |
+
],
|
| 1027 |
+
"source": [
|
| 1028 |
+
"import pandas as pd\n",
|
| 1029 |
+
"\n",
|
| 1030 |
+
"# Örnek TF-IDF skoru ve anahtar kelimeler\n",
|
| 1031 |
+
"keyword_data = pd.read_csv('keywords_with_scores.csv')\n",
|
| 1032 |
+
"\n",
|
| 1033 |
+
"df = pd.DataFrame(keyword_data)\n",
|
| 1034 |
+
"print(df.head())\n"
|
| 1035 |
+
]
|
| 1036 |
+
},
|
| 1037 |
{
|
| 1038 |
"cell_type": "code",
|
| 1039 |
"execution_count": null,
|
| 1040 |
"metadata": {},
|
| 1041 |
"outputs": [],
|
| 1042 |
"source": [
|
| 1043 |
+
"import pandas as pd\n",
|
| 1044 |
+
"from langdetect import detect, DetectorFactory\n",
|
| 1045 |
+
"\n",
|
| 1046 |
+
"DetectorFactory.seed = 0 # Her zaman aynı sonuçları almak için\n",
|
| 1047 |
+
"\n",
|
| 1048 |
+
"def is_turkish(text):\n",
|
| 1049 |
+
" try:\n",
|
| 1050 |
+
" return detect(text) == 'tr'\n",
|
| 1051 |
+
" except:\n",
|
| 1052 |
+
" return False\n",
|
| 1053 |
+
"\n",
|
| 1054 |
+
"def filter_turkish_keywords(text):\n",
|
| 1055 |
+
" if pd.isna(text):\n",
|
| 1056 |
+
" return [] # NaN değerleri boş liste olarak döndür\n",
|
| 1057 |
+
" keywords = text.split(',') # Anahtar kelimeleri virgülle ayır\n",
|
| 1058 |
+
" return [kw.strip() for kw in keywords if is_turkish(kw.strip())]\n",
|
| 1059 |
+
"\n",
|
| 1060 |
+
"# CSV dosyasını oku\n",
|
| 1061 |
+
"df = pd.read_csv('path_to_your_file.csv')\n",
|
| 1062 |
+
"\n",
|
| 1063 |
+
"# Anahtar kelime sütunlarını belirle\n",
|
| 1064 |
+
"keyword_columns = ['Keyword_1', 'Keyword_2', 'Keyword_3', 'Keyword_4', 'Keyword_5', \n",
|
| 1065 |
+
" 'Keyword_6', 'Keyword_7', 'Keyword_8', 'Keyword_9', 'Keyword_10']\n",
|
| 1066 |
+
"\n",
|
| 1067 |
+
"# Her anahtar kelime sütunu için Türkçe olanları filtrele\n",
|
| 1068 |
+
"for col in keyword_columns:\n",
|
| 1069 |
+
" df[f'{col}_Turkish'] = df[col].apply(filter_turkish_keywords)\n",
|
| 1070 |
+
"\n",
|
| 1071 |
+
"print(df.head())\n"
|
| 1072 |
]
|
| 1073 |
}
|
| 1074 |
],
|