Spaces:
Sleeping
Sleeping
Update space 1st time
Browse files- .gitignore +28 -0
- .huggingface.yaml +3 -0
- good-main.py +118 -0
- index.html +0 -19
- main.py +291 -0
- old-main.py +67 -0
- requirements.txt +8 -0
- style.css +0 -28
- with-english-name-spacy.py +121 -0
.gitignore
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# Virtual environment
|
| 7 |
+
venv
|
| 8 |
+
|
| 9 |
+
# Environment variables and secrets
|
| 10 |
+
.env
|
| 11 |
+
|
| 12 |
+
# VSCode settings (optional, if not shared across devs)
|
| 13 |
+
.vscode/
|
| 14 |
+
|
| 15 |
+
# OS files
|
| 16 |
+
.DS_Store
|
| 17 |
+
Thumbs.db
|
| 18 |
+
|
| 19 |
+
# Logs
|
| 20 |
+
*.log
|
| 21 |
+
|
| 22 |
+
# Python distribution / packaging
|
| 23 |
+
build/
|
| 24 |
+
dist/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
|
| 27 |
+
# Jupyter Notebook checkpoints (if you use Jupyter)
|
| 28 |
+
.ipynb_checkpoints/
|
.huggingface.yaml
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# .huggingface.yaml
|
| 2 |
+
sdk: "fastapi"
|
| 3 |
+
python_file: "main.py"
|
good-main.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification
|
| 5 |
+
import dateparser
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import spacy
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
|
| 11 |
+
# Load classification and summarization models
|
| 12 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 13 |
+
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
| 14 |
+
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
| 15 |
+
|
| 16 |
+
# Load Indic NER (or any general one)
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
| 18 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
| 19 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 20 |
+
|
| 21 |
+
# Labels for classification
|
| 22 |
+
labels = [
|
| 23 |
+
"task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "status_update",
|
| 24 |
+
"sick_notice", "out_of_office", "travel_plan", "celebration", "emotion", "other"
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
class TextInput(BaseModel):
|
| 28 |
+
text: str
|
| 29 |
+
|
| 30 |
+
def extract_dates(text):
|
| 31 |
+
time_expressions = re.findall(
|
| 32 |
+
r'\b(kal|aaj|parso|raat|subah|shaam|dopahar|[0-9]{1,2} baje|next week|tomorrow|today|yesterday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|[\d]{1,2}/[\d]{1,2}/[\d]{2,4})\b',
|
| 33 |
+
text, flags=re.IGNORECASE)
|
| 34 |
+
parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)]
|
| 35 |
+
return list(set(parsed)), list(set(time_expressions))
|
| 36 |
+
|
| 37 |
+
def detect_tense(parsed_dates):
|
| 38 |
+
now = datetime.now()
|
| 39 |
+
tenses = set()
|
| 40 |
+
for d in parsed_dates:
|
| 41 |
+
dt = dateparser.parse(d)
|
| 42 |
+
if not dt:
|
| 43 |
+
continue
|
| 44 |
+
if dt < now:
|
| 45 |
+
tenses.add("past")
|
| 46 |
+
elif dt > now:
|
| 47 |
+
tenses.add("future")
|
| 48 |
+
else:
|
| 49 |
+
tenses.add("present")
|
| 50 |
+
return list(tenses) if tenses else ["unknown"]
|
| 51 |
+
|
| 52 |
+
def generate_summary(text):
|
| 53 |
+
input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids
|
| 54 |
+
output_ids = summarizer_model.generate(input_ids, max_length=60, num_beams=4, early_stopping=True)
|
| 55 |
+
return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def extract_people(text):
|
| 59 |
+
ner_results = ner_pipeline(text)
|
| 60 |
+
return list(set(ent['word'] for ent in ner_results if ent['entity_group'] == 'PER'))
|
| 61 |
+
|
| 62 |
+
def estimate_mood(text):
|
| 63 |
+
text_lower = text.lower()
|
| 64 |
+
mood_map = {
|
| 65 |
+
"happy": ["happy", "excited", "joy", "grateful"],
|
| 66 |
+
"sad": ["sad", "upset", "crying", "lonely"],
|
| 67 |
+
"angry": ["angry", "annoyed", "frustrated", "irritated"],
|
| 68 |
+
"nervous": ["nervous", "anxious", "scared"],
|
| 69 |
+
"unwell": ["sick", "unwell", "not feeling well", "fever", "cold", "headache"],
|
| 70 |
+
"neutral": []
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
for mood, keywords in mood_map.items():
|
| 74 |
+
for kw in keywords:
|
| 75 |
+
if kw in text_lower:
|
| 76 |
+
return mood
|
| 77 |
+
return "neutral"
|
| 78 |
+
|
| 79 |
+
def generate_tags(label, text):
|
| 80 |
+
base_tags = [label]
|
| 81 |
+
keywords = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower())
|
| 82 |
+
force_tags = []
|
| 83 |
+
|
| 84 |
+
if any(w in text.lower() for w in ["sick", "unwell", "not feeling well", "fever"]):
|
| 85 |
+
force_tags += ["sick", "leave"]
|
| 86 |
+
if "work" in text.lower():
|
| 87 |
+
force_tags.append("work")
|
| 88 |
+
|
| 89 |
+
return list(set(base_tags + force_tags + keywords))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@app.post("/analyze")
|
| 93 |
+
async def analyze(input: TextInput):
|
| 94 |
+
text = input.text
|
| 95 |
+
|
| 96 |
+
classification = classifier(text, labels)
|
| 97 |
+
best_label = classification['labels'][0]
|
| 98 |
+
scores = dict(zip(classification['labels'], classification['scores']))
|
| 99 |
+
|
| 100 |
+
parsed_dates, time_mentions = extract_dates(text)
|
| 101 |
+
tenses = detect_tense(parsed_dates)
|
| 102 |
+
summary = generate_summary(text)
|
| 103 |
+
people = extract_people(text)
|
| 104 |
+
mood = estimate_mood(text)
|
| 105 |
+
tags = generate_tags(best_label, text)
|
| 106 |
+
|
| 107 |
+
return {
|
| 108 |
+
"type": best_label,
|
| 109 |
+
"confidence_scores": scores,
|
| 110 |
+
"time_mentions": time_mentions,
|
| 111 |
+
"parsed_dates": parsed_dates,
|
| 112 |
+
"tense": tenses,
|
| 113 |
+
"summary": summary,
|
| 114 |
+
"people": people,
|
| 115 |
+
"mood": mood,
|
| 116 |
+
"tags": tags
|
| 117 |
+
}
|
| 118 |
+
|
index.html
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
<!doctype html>
|
| 2 |
-
<html>
|
| 3 |
-
<head>
|
| 4 |
-
<meta charset="utf-8" />
|
| 5 |
-
<meta name="viewport" content="width=device-width" />
|
| 6 |
-
<title>My static Space</title>
|
| 7 |
-
<link rel="stylesheet" href="style.css" />
|
| 8 |
-
</head>
|
| 9 |
-
<body>
|
| 10 |
-
<div class="card">
|
| 11 |
-
<h1>Welcome to your static Space!</h1>
|
| 12 |
-
<p>You can modify this app directly by editing <i>index.html</i> in the Files and versions tab.</p>
|
| 13 |
-
<p>
|
| 14 |
-
Also don't forget to check the
|
| 15 |
-
<a href="https://huggingface.co/docs/hub/spaces" target="_blank">Spaces documentation</a>.
|
| 16 |
-
</p>
|
| 17 |
-
</div>
|
| 18 |
-
</body>
|
| 19 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification
|
| 5 |
+
import dateparser
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from langdetect import detect
|
| 8 |
+
from textblob import TextBlob
|
| 9 |
+
from dateparser.search import search_dates
|
| 10 |
+
import uuid
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
app = FastAPI()
|
| 14 |
+
|
| 15 |
+
# Load classification and summarization models
|
| 16 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 17 |
+
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
| 18 |
+
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
| 19 |
+
|
| 20 |
+
# Load Indic NER (or any general one)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
| 22 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
| 23 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 24 |
+
|
| 25 |
+
# Labels for classification
|
| 26 |
+
labels = [
|
| 27 |
+
"task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "status_update",
|
| 28 |
+
"sick_notice", "out_of_office", "travel_plan", "celebration", "emotion", "news", "information", "other"
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
class TextInput(BaseModel):
|
| 32 |
+
text: str
|
| 33 |
+
|
| 34 |
+
# Function to extract dates and time mentions based on regex patterns
|
| 35 |
+
def extract_dates(text):
|
| 36 |
+
time_expressions = re.findall(
|
| 37 |
+
r'\b(?:\d{1,2}(?:st|nd|rd|th)?\s+(January|February|March|April|May|June|July|August|September|October|November|December)(?:\s+\d{4})?|\d{1,2}:\d{2}\s?(AM|PM|am|pm)?)\b',
|
| 38 |
+
text, flags=re.IGNORECASE)
|
| 39 |
+
parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)]
|
| 40 |
+
return list(set(parsed)), list(set(time_expressions))
|
| 41 |
+
|
| 42 |
+
# Function to detect tense based on parsed dates
|
| 43 |
+
def extract_dates_with_accuracy(text):
|
| 44 |
+
settings = {
|
| 45 |
+
"PREFER_DATES_FROM": "future", # Bias future
|
| 46 |
+
"RELATIVE_BASE": datetime.now(), # Anchor to now
|
| 47 |
+
"RETURN_AS_TIMEZONE_AWARE": False, # Use naive datetime
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
results = search_dates(text, settings=settings)
|
| 51 |
+
time_mentions, parsed = [], []
|
| 52 |
+
|
| 53 |
+
if results:
|
| 54 |
+
for mention, dt in results:
|
| 55 |
+
if len(mention.strip()) <= 3:
|
| 56 |
+
continue # skip vague/short like "on", "to"
|
| 57 |
+
if dt:
|
| 58 |
+
# Convert to clean ISO format (e.g. "2025-07-14T11:00:00")
|
| 59 |
+
parsed.append(dt.isoformat())
|
| 60 |
+
time_mentions.append(mention.strip())
|
| 61 |
+
|
| 62 |
+
return list(set(parsed)), list(set(time_mentions))
|
| 63 |
+
|
| 64 |
+
def detect_tense(parsed_dates):
|
| 65 |
+
now = datetime.now()
|
| 66 |
+
tenses = set()
|
| 67 |
+
for d in parsed_dates:
|
| 68 |
+
dt = dateparser.parse(d)
|
| 69 |
+
if not dt:
|
| 70 |
+
continue
|
| 71 |
+
if dt < now:
|
| 72 |
+
tenses.add("past")
|
| 73 |
+
elif dt > now:
|
| 74 |
+
tenses.add("future")
|
| 75 |
+
else:
|
| 76 |
+
tenses.add("present")
|
| 77 |
+
return list(tenses) if tenses else ["unknown"]
|
| 78 |
+
|
| 79 |
+
def generate_summary(text):
|
| 80 |
+
input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids
|
| 81 |
+
output_ids = summarizer_model.generate(input_ids, max_length=60, num_beams=4, early_stopping=True)
|
| 82 |
+
return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def extract_people(text):
|
| 86 |
+
ner_results = ner_pipeline(text)
|
| 87 |
+
return list(set(ent['word'] for ent in ner_results if ent['entity_group'] == 'PER'))
|
| 88 |
+
|
| 89 |
+
def estimate_mood(text):
|
| 90 |
+
text_lower = text.lower()
|
| 91 |
+
mood_map = {
|
| 92 |
+
"happy": ["happy", "excited", "joy", "grateful"],
|
| 93 |
+
"sad": ["sad", "upset", "crying", "lonely"],
|
| 94 |
+
"angry": ["angry", "annoyed", "frustrated", "irritated"],
|
| 95 |
+
"nervous": ["nervous", "anxious", "scared"],
|
| 96 |
+
"unwell": ["sick", "unwell", "not feeling well", "fever", "cold", "headache"],
|
| 97 |
+
"neutral": []
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
for mood, keywords in mood_map.items():
|
| 101 |
+
for kw in keywords:
|
| 102 |
+
if kw in text_lower:
|
| 103 |
+
return mood
|
| 104 |
+
return "neutral"
|
| 105 |
+
|
| 106 |
+
def generate_tags(label, text):
|
| 107 |
+
base_tags = [label]
|
| 108 |
+
keywords = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower())
|
| 109 |
+
force_tags = []
|
| 110 |
+
|
| 111 |
+
if any(w in text.lower() for w in ["sick", "unwell", "not feeling well", "fever"]):
|
| 112 |
+
force_tags += ["sick", "leave"]
|
| 113 |
+
if "work" in text.lower():
|
| 114 |
+
force_tags.append("work")
|
| 115 |
+
|
| 116 |
+
return list(set(base_tags + force_tags + keywords))
|
| 117 |
+
|
| 118 |
+
# Detect language using langdetect
|
| 119 |
+
def detect_language(text):
|
| 120 |
+
try:
|
| 121 |
+
return detect(text)
|
| 122 |
+
except:
|
| 123 |
+
return "unknown"
|
| 124 |
+
|
| 125 |
+
# Detect sentiment using TextBlob
|
| 126 |
+
def get_sentiment_score(text):
|
| 127 |
+
try:
|
| 128 |
+
blob = TextBlob(text)
|
| 129 |
+
return round(blob.sentiment.polarity, 3) # Range: -1 to 1
|
| 130 |
+
except:
|
| 131 |
+
return 0.0
|
| 132 |
+
|
| 133 |
+
# Infer intent based on label
|
| 134 |
+
def infer_intent(label, text):
|
| 135 |
+
label_to_intent = {
|
| 136 |
+
"out_of_office": "taking_leave",
|
| 137 |
+
"sick_notice": "taking_leave",
|
| 138 |
+
"reminder": "set_reminder",
|
| 139 |
+
"event": "log_event",
|
| 140 |
+
"meeting": "schedule_meeting",
|
| 141 |
+
"note": "log_note",
|
| 142 |
+
"journal": "log_memory",
|
| 143 |
+
"memory": "log_memory",
|
| 144 |
+
"status_update": "status_update",
|
| 145 |
+
"task": "create_task",
|
| 146 |
+
"celebration": "log_event"
|
| 147 |
+
}
|
| 148 |
+
return label_to_intent.get(label, "other")
|
| 149 |
+
|
| 150 |
+
# Extract entities using NER
|
| 151 |
+
def extract_entities(text):
|
| 152 |
+
ner_results = ner_pipeline(text)
|
| 153 |
+
entities = {"people": [], "places": [], "organizations": [], "dates": [], "misc": []}
|
| 154 |
+
|
| 155 |
+
for ent in ner_results:
|
| 156 |
+
word = ent["word"].replace("##", "")
|
| 157 |
+
if len(word) <= 2 or not word.isalpha():
|
| 158 |
+
continue # skip single-letter non-words
|
| 159 |
+
group = ent["entity_group"]
|
| 160 |
+
if group == "PER":
|
| 161 |
+
entities["people"].append(word)
|
| 162 |
+
elif group == "LOC":
|
| 163 |
+
entities["places"].append(word)
|
| 164 |
+
elif group == "ORG":
|
| 165 |
+
entities["organizations"].append(word)
|
| 166 |
+
elif group == "DATE":
|
| 167 |
+
entities["dates"].append(word)
|
| 168 |
+
else:
|
| 169 |
+
entities["misc"].append(word)
|
| 170 |
+
|
| 171 |
+
# ✅ Fallback: Add known days/dates if not already captured
|
| 172 |
+
day_keywords = re.findall(r'\b(Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday)\b', text, re.IGNORECASE)
|
| 173 |
+
for day in day_keywords:
|
| 174 |
+
if day not in entities["dates"]:
|
| 175 |
+
entities["dates"].append(day)
|
| 176 |
+
|
| 177 |
+
# ✅ Fallback: Add phrases like “product launch”, “project”, etc. to misc
|
| 178 |
+
lower_text = text.lower()
|
| 179 |
+
if "product launch" in lower_text:
|
| 180 |
+
entities["misc"].append("product launch")
|
| 181 |
+
if "birthday" in lower_text:
|
| 182 |
+
entities["misc"].append("birthday")
|
| 183 |
+
if "project" in lower_text:
|
| 184 |
+
entities["misc"].append("project")
|
| 185 |
+
|
| 186 |
+
# ✅ Deduplicate and return
|
| 187 |
+
|
| 188 |
+
return {k: list(set(v)) for k, v in entities.items()}
|
| 189 |
+
|
| 190 |
+
# Function to calculate urgency score based on parsed dates
|
| 191 |
+
def get_urgency_score(text, parsed_dates):
|
| 192 |
+
urgency_keywords = ["urgent", "asap", "immediate", "must", "need to", "important", "don’t forget", "right away"]
|
| 193 |
+
text_lower = text.lower()
|
| 194 |
+
|
| 195 |
+
score = 0.0
|
| 196 |
+
|
| 197 |
+
# 1. Keyword-based boost
|
| 198 |
+
if any(word in text_lower for word in urgency_keywords):
|
| 199 |
+
score = 0.7
|
| 200 |
+
|
| 201 |
+
# 2. Time-based boost
|
| 202 |
+
now = datetime.now()
|
| 203 |
+
for d in parsed_dates:
|
| 204 |
+
dt = dateparser.parse(d)
|
| 205 |
+
if dt:
|
| 206 |
+
hours = (dt - now).total_seconds() / 3600
|
| 207 |
+
if 0 <= hours <= 24:
|
| 208 |
+
score = max(score, 1.0)
|
| 209 |
+
elif 24 < hours <= 72:
|
| 210 |
+
score = max(score, 0.8)
|
| 211 |
+
elif 72 < hours <= 168:
|
| 212 |
+
score = max(score, 0.5)
|
| 213 |
+
|
| 214 |
+
return round(score, 2)
|
| 215 |
+
|
| 216 |
+
# Function to get meta information about the text
|
| 217 |
+
def get_meta_info(text: str):
|
| 218 |
+
now = datetime.now()
|
| 219 |
+
return {
|
| 220 |
+
"word_count": len(text.strip().split()),
|
| 221 |
+
"day_of_week": now.strftime('%A'), # e.g., "Thursday"
|
| 222 |
+
"hour_of_day": now.hour,
|
| 223 |
+
"month": now.strftime('%B'), # e.g., "July"
|
| 224 |
+
"year": now.year # 0 to 23
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
@app.post("/analyze")
|
| 229 |
+
async def analyze(input: TextInput):
|
| 230 |
+
start_time = time.time() # ⏱️ start
|
| 231 |
+
|
| 232 |
+
text = input.text
|
| 233 |
+
|
| 234 |
+
classification = classifier(text, labels)
|
| 235 |
+
best_label = classification['labels'][0]
|
| 236 |
+
|
| 237 |
+
if "reported" in text or "announced" in text or "collapsed" in text:
|
| 238 |
+
if best_label in ["task", "reminder", "event"]:
|
| 239 |
+
best_label = "news"
|
| 240 |
+
|
| 241 |
+
scores = dict(zip(classification['labels'], classification['scores']))
|
| 242 |
+
|
| 243 |
+
parsed_dates, time_mentions = extract_dates_with_accuracy(text)
|
| 244 |
+
tenses = detect_tense(parsed_dates)
|
| 245 |
+
summary = generate_summary(text).removeprefix("summary:").strip()
|
| 246 |
+
people = extract_people(text)
|
| 247 |
+
mood = estimate_mood(text)
|
| 248 |
+
tags = generate_tags(best_label, text)
|
| 249 |
+
language_detected = detect_language(text)
|
| 250 |
+
sentiment_score = get_sentiment_score(text)
|
| 251 |
+
entities = extract_entities(text)
|
| 252 |
+
intent = infer_intent(best_label, text)
|
| 253 |
+
urgency_score = get_urgency_score(text, parsed_dates)
|
| 254 |
+
|
| 255 |
+
# Define action triggers
|
| 256 |
+
ACTION_TRIGGERS = ["plan", "organize", "schedule", "remember", "book", "call", "follow up", "need to"]
|
| 257 |
+
action_required = False
|
| 258 |
+
if any(word in text.lower() for word in ACTION_TRIGGERS): action_required = True
|
| 259 |
+
|
| 260 |
+
action_required = urgency_score >= 0.6 or action_required
|
| 261 |
+
meta = get_meta_info(text)
|
| 262 |
+
|
| 263 |
+
end_time = time.time() # ⏱️ end
|
| 264 |
+
processing_time_ms = round((end_time - start_time) * 1000)
|
| 265 |
+
|
| 266 |
+
return {
|
| 267 |
+
"uuid": str(uuid.uuid4()), # Unique identifier for the request
|
| 268 |
+
"raw_text": text,
|
| 269 |
+
"word_count": meta["word_count"],
|
| 270 |
+
"day_of_week": meta["day_of_week"],
|
| 271 |
+
"hour_of_day": meta["hour_of_day"],
|
| 272 |
+
"month": meta["month"],
|
| 273 |
+
"year": meta["year"],
|
| 274 |
+
"type": best_label,
|
| 275 |
+
"intent": intent,
|
| 276 |
+
"confidence_scores": scores,
|
| 277 |
+
"urgency_score": urgency_score,
|
| 278 |
+
"time_mentions": time_mentions,
|
| 279 |
+
"parsed_dates": parsed_dates,
|
| 280 |
+
"tense": tenses,
|
| 281 |
+
"summary": summary,
|
| 282 |
+
"people": people,
|
| 283 |
+
"mood": mood,
|
| 284 |
+
"language": language_detected,
|
| 285 |
+
"sentiment_score": sentiment_score,
|
| 286 |
+
"tags": tags,
|
| 287 |
+
"action_required": action_required,
|
| 288 |
+
"entities": entities,
|
| 289 |
+
"processing_time_ms": processing_time_ms
|
| 290 |
+
}
|
| 291 |
+
|
old-main.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
import dateparser
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
# Load classification model
|
| 11 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 12 |
+
|
| 13 |
+
# Load summarization model
|
| 14 |
+
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
| 15 |
+
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
| 16 |
+
|
| 17 |
+
# Labels
|
| 18 |
+
labels = ["task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "other"]
|
| 19 |
+
|
| 20 |
+
class TextInput(BaseModel):
|
| 21 |
+
text: str
|
| 22 |
+
|
| 23 |
+
def extract_dates(text):
|
| 24 |
+
time_expressions = re.findall(
|
| 25 |
+
r'\b(kal|aaj|parso|raat|subah|shaam|dopahar|[0-9]{1,2} baje|next week|tomorrow|today|yesterday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|[\d]{1,2}/[\d]{1,2}/[\d]{2,4})\b',
|
| 26 |
+
text, flags=re.IGNORECASE)
|
| 27 |
+
parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)]
|
| 28 |
+
return list(set(parsed)), list(set(time_expressions))
|
| 29 |
+
|
| 30 |
+
def detect_tense(parsed_dates):
|
| 31 |
+
now = datetime.now()
|
| 32 |
+
tenses = set()
|
| 33 |
+
for d in parsed_dates:
|
| 34 |
+
dt = dateparser.parse(d)
|
| 35 |
+
if not dt:
|
| 36 |
+
continue
|
| 37 |
+
if dt < now:
|
| 38 |
+
tenses.add("past")
|
| 39 |
+
elif dt > now:
|
| 40 |
+
tenses.add("future")
|
| 41 |
+
else:
|
| 42 |
+
tenses.add("present")
|
| 43 |
+
return list(tenses) if tenses else ["unknown"]
|
| 44 |
+
|
| 45 |
+
def generate_summary(text):
|
| 46 |
+
input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids
|
| 47 |
+
output_ids = summarizer_model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True)
|
| 48 |
+
return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 49 |
+
|
| 50 |
+
@app.post("/analyze")
|
| 51 |
+
async def analyze(input: TextInput):
|
| 52 |
+
text = input.text
|
| 53 |
+
classification = classifier(text, labels)
|
| 54 |
+
best_label = classification['labels'][0]
|
| 55 |
+
scores = dict(zip(classification['labels'], classification['scores']))
|
| 56 |
+
parsed_dates, time_mentions = extract_dates(text)
|
| 57 |
+
tenses = detect_tense(parsed_dates)
|
| 58 |
+
summary = generate_summary(text)
|
| 59 |
+
|
| 60 |
+
return {
|
| 61 |
+
"type": best_label,
|
| 62 |
+
"confidence_scores": scores,
|
| 63 |
+
"time_mentions": time_mentions,
|
| 64 |
+
"parsed_dates": parsed_dates,
|
| 65 |
+
"tense": tenses,
|
| 66 |
+
"summary": summary
|
| 67 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.110.0
|
| 2 |
+
uvicorn==0.29.0
|
| 3 |
+
transformers==4.40.0
|
| 4 |
+
torch>=2.0.0
|
| 5 |
+
dateparser==1.2.0
|
| 6 |
+
# spacy
|
| 7 |
+
langdetect
|
| 8 |
+
textblob
|
style.css
DELETED
|
@@ -1,28 +0,0 @@
|
|
| 1 |
-
body {
|
| 2 |
-
padding: 2rem;
|
| 3 |
-
font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif;
|
| 4 |
-
}
|
| 5 |
-
|
| 6 |
-
h1 {
|
| 7 |
-
font-size: 16px;
|
| 8 |
-
margin-top: 0;
|
| 9 |
-
}
|
| 10 |
-
|
| 11 |
-
p {
|
| 12 |
-
color: rgb(107, 114, 128);
|
| 13 |
-
font-size: 15px;
|
| 14 |
-
margin-bottom: 10px;
|
| 15 |
-
margin-top: 5px;
|
| 16 |
-
}
|
| 17 |
-
|
| 18 |
-
.card {
|
| 19 |
-
max-width: 620px;
|
| 20 |
-
margin: 0 auto;
|
| 21 |
-
padding: 16px;
|
| 22 |
-
border: 1px solid lightgray;
|
| 23 |
-
border-radius: 16px;
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
.card p:last-child {
|
| 27 |
-
margin-bottom: 0;
|
| 28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with-english-name-spacy.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification
|
| 5 |
+
import dateparser
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import spacy
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
|
| 11 |
+
# Load classification and summarization models
|
| 12 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 13 |
+
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
| 14 |
+
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
| 15 |
+
|
| 16 |
+
# Load spaCy English model for name/entity detection
|
| 17 |
+
try:
|
| 18 |
+
nlp = spacy.load("en_core_web_sm")
|
| 19 |
+
except:
|
| 20 |
+
import subprocess
|
| 21 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 22 |
+
nlp = spacy.load("en_core_web_sm")
|
| 23 |
+
|
| 24 |
+
# Labels for classification
|
| 25 |
+
labels = [
|
| 26 |
+
"task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "status_update",
|
| 27 |
+
"sick_notice", "out_of_office", "travel_plan", "celebration", "emotion", "other"
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
class TextInput(BaseModel):
|
| 31 |
+
text: str
|
| 32 |
+
|
| 33 |
+
def extract_dates(text):
|
| 34 |
+
time_expressions = re.findall(
|
| 35 |
+
r'\b(kal|aaj|parso|raat|subah|shaam|dopahar|[0-9]{1,2} baje|next week|tomorrow|today|yesterday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|[\d]{1,2}/[\d]{1,2}/[\d]{2,4})\b',
|
| 36 |
+
text, flags=re.IGNORECASE)
|
| 37 |
+
parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)]
|
| 38 |
+
return list(set(parsed)), list(set(time_expressions))
|
| 39 |
+
|
| 40 |
+
def detect_tense(parsed_dates):
|
| 41 |
+
now = datetime.now()
|
| 42 |
+
tenses = set()
|
| 43 |
+
for d in parsed_dates:
|
| 44 |
+
dt = dateparser.parse(d)
|
| 45 |
+
if not dt:
|
| 46 |
+
continue
|
| 47 |
+
if dt < now:
|
| 48 |
+
tenses.add("past")
|
| 49 |
+
elif dt > now:
|
| 50 |
+
tenses.add("future")
|
| 51 |
+
else:
|
| 52 |
+
tenses.add("present")
|
| 53 |
+
return list(tenses) if tenses else ["unknown"]
|
| 54 |
+
|
| 55 |
+
def generate_summary(text):
|
| 56 |
+
input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids
|
| 57 |
+
output_ids = summarizer_model.generate(input_ids, max_length=60, num_beams=4, early_stopping=True)
|
| 58 |
+
return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def extract_people(text):
|
| 62 |
+
doc = nlp(text)
|
| 63 |
+
return list(set(ent.text for ent in doc.ents if ent.label_ in ["PERSON"]))
|
| 64 |
+
|
| 65 |
+
def estimate_mood(text):
|
| 66 |
+
text_lower = text.lower()
|
| 67 |
+
mood_map = {
|
| 68 |
+
"happy": ["happy", "excited", "joy", "grateful"],
|
| 69 |
+
"sad": ["sad", "upset", "crying", "lonely"],
|
| 70 |
+
"angry": ["angry", "annoyed", "frustrated", "irritated"],
|
| 71 |
+
"nervous": ["nervous", "anxious", "scared"],
|
| 72 |
+
"unwell": ["sick", "unwell", "not feeling well", "fever", "cold", "headache"],
|
| 73 |
+
"neutral": []
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
for mood, keywords in mood_map.items():
|
| 77 |
+
for kw in keywords:
|
| 78 |
+
if kw in text_lower:
|
| 79 |
+
return mood
|
| 80 |
+
return "neutral"
|
| 81 |
+
|
| 82 |
+
def generate_tags(label, text):
|
| 83 |
+
base_tags = [label]
|
| 84 |
+
keywords = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower())
|
| 85 |
+
force_tags = []
|
| 86 |
+
|
| 87 |
+
if any(w in text.lower() for w in ["sick", "unwell", "not feeling well", "fever"]):
|
| 88 |
+
force_tags += ["sick", "leave"]
|
| 89 |
+
if "work" in text.lower():
|
| 90 |
+
force_tags.append("work")
|
| 91 |
+
|
| 92 |
+
return list(set(base_tags + force_tags + keywords))
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
@app.post("/analyze")
|
| 96 |
+
async def analyze(input: TextInput):
|
| 97 |
+
text = input.text
|
| 98 |
+
|
| 99 |
+
classification = classifier(text, labels)
|
| 100 |
+
best_label = classification['labels'][0]
|
| 101 |
+
scores = dict(zip(classification['labels'], classification['scores']))
|
| 102 |
+
|
| 103 |
+
parsed_dates, time_mentions = extract_dates(text)
|
| 104 |
+
tenses = detect_tense(parsed_dates)
|
| 105 |
+
summary = generate_summary(text)
|
| 106 |
+
people = extract_people(text)
|
| 107 |
+
mood = estimate_mood(text)
|
| 108 |
+
tags = generate_tags(best_label, text)
|
| 109 |
+
|
| 110 |
+
return {
|
| 111 |
+
"type": best_label,
|
| 112 |
+
"confidence_scores": scores,
|
| 113 |
+
"time_mentions": time_mentions,
|
| 114 |
+
"parsed_dates": parsed_dates,
|
| 115 |
+
"tense": tenses,
|
| 116 |
+
"summary": summary,
|
| 117 |
+
"people": people,
|
| 118 |
+
"mood": mood,
|
| 119 |
+
"tags": tags
|
| 120 |
+
}
|
| 121 |
+
|