Spaces:
Runtime error
Runtime error
Upload mae_waste_classifier.py with huggingface_hub
Browse files- mae_waste_classifier.py +209 -0
mae_waste_classifier.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""MAE ViT-Base waste classifier for inference."""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import timm
|
| 9 |
+
import os
|
| 10 |
+
import json
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
|
| 13 |
+
class MAEWasteClassifier:
|
| 14 |
+
"""Waste classifier using finetuned MAE ViT-Base model."""
|
| 15 |
+
|
| 16 |
+
def __init__(self, model_path=None, hf_model_id="ysfad/mae-waste-classifier", device=None):
|
| 17 |
+
self.device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
|
| 18 |
+
self.hf_model_id = hf_model_id
|
| 19 |
+
|
| 20 |
+
# Try to load model from different sources
|
| 21 |
+
if model_path and os.path.exists(model_path):
|
| 22 |
+
self.model_path = model_path
|
| 23 |
+
print(f"π Using local model: {model_path}")
|
| 24 |
+
else:
|
| 25 |
+
# Try to download from HF Hub
|
| 26 |
+
try:
|
| 27 |
+
print(f"π Downloading model from HF Hub: {hf_model_id}")
|
| 28 |
+
self.model_path = hf_hub_download(
|
| 29 |
+
repo_id=hf_model_id,
|
| 30 |
+
filename="best_model.pth",
|
| 31 |
+
cache_dir="./hf_cache"
|
| 32 |
+
)
|
| 33 |
+
print(f"β
Downloaded model to: {self.model_path}")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"β οΈ Could not download from HF Hub: {e}")
|
| 36 |
+
# Fallback to local path
|
| 37 |
+
self.model_path = "output_simple_mae/best_model.pth"
|
| 38 |
+
if not os.path.exists(self.model_path):
|
| 39 |
+
raise FileNotFoundError(f"Model not found locally at {self.model_path} and could not download from HF Hub")
|
| 40 |
+
|
| 41 |
+
# Class names from training
|
| 42 |
+
self.class_names = [
|
| 43 |
+
'Cardboard', 'Food Organics', 'Glass', 'Metal',
|
| 44 |
+
'Miscellaneous Trash', 'Paper', 'Plastic',
|
| 45 |
+
'Textile Trash', 'Vegetation'
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
# Load disposal instructions
|
| 49 |
+
self.disposal_instructions = {
|
| 50 |
+
"Cardboard": "Flatten and place in recycling bin. Remove any tape or staples.",
|
| 51 |
+
"Food Organics": "Compost in organic waste bin or home composter.",
|
| 52 |
+
"Glass": "Rinse and place in glass recycling. Remove lids and caps.",
|
| 53 |
+
"Metal": "Rinse aluminum/steel cans and place in recycling bin.",
|
| 54 |
+
"Miscellaneous Trash": "Dispose in general waste bin. Cannot be recycled.",
|
| 55 |
+
"Paper": "Place clean paper in recycling. Remove plastic windows from envelopes.",
|
| 56 |
+
"Plastic": "Check recycling number. Rinse containers before recycling.",
|
| 57 |
+
"Textile Trash": "Donate if reusable, otherwise dispose in textile recycling.",
|
| 58 |
+
"Vegetation": "Compost in organic waste or use for mulch in garden."
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# Load model
|
| 62 |
+
self.model = self._load_model()
|
| 63 |
+
|
| 64 |
+
# Image preprocessing
|
| 65 |
+
self.transform = transforms.Compose([
|
| 66 |
+
transforms.Resize((224, 224)),
|
| 67 |
+
transforms.ToTensor(),
|
| 68 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 69 |
+
])
|
| 70 |
+
|
| 71 |
+
print(f"β
MAE Waste Classifier loaded on {self.device}")
|
| 72 |
+
print(f"π Model: ViT-Base MAE, Classes: {len(self.class_names)}")
|
| 73 |
+
|
| 74 |
+
def _load_model(self):
|
| 75 |
+
"""Load the finetuned MAE model."""
|
| 76 |
+
try:
|
| 77 |
+
# Create ViT model using timm
|
| 78 |
+
model = timm.create_model('vit_base_patch16_224', pretrained=False, num_classes=len(self.class_names))
|
| 79 |
+
|
| 80 |
+
# Load checkpoint
|
| 81 |
+
checkpoint = torch.load(self.model_path, map_location=self.device)
|
| 82 |
+
|
| 83 |
+
# Load state dict
|
| 84 |
+
if 'model_state_dict' in checkpoint:
|
| 85 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 86 |
+
else:
|
| 87 |
+
model.load_state_dict(checkpoint)
|
| 88 |
+
|
| 89 |
+
model.to(self.device)
|
| 90 |
+
model.eval()
|
| 91 |
+
|
| 92 |
+
print(f"β
Loaded finetuned MAE model from {self.model_path}")
|
| 93 |
+
return model
|
| 94 |
+
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"β Error loading model: {e}")
|
| 97 |
+
raise
|
| 98 |
+
|
| 99 |
+
def classify_image(self, image, top_k=5):
|
| 100 |
+
"""
|
| 101 |
+
Classify a waste image.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
image: PIL Image or path to image
|
| 105 |
+
top_k: Number of top predictions to return
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
dict: Classification results
|
| 109 |
+
"""
|
| 110 |
+
try:
|
| 111 |
+
# Load and preprocess image
|
| 112 |
+
if isinstance(image, str):
|
| 113 |
+
image = Image.open(image).convert('RGB')
|
| 114 |
+
elif not isinstance(image, Image.Image):
|
| 115 |
+
raise ValueError("Image must be PIL Image or path string")
|
| 116 |
+
|
| 117 |
+
# Preprocess
|
| 118 |
+
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
| 119 |
+
|
| 120 |
+
# Inference
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
outputs = self.model(input_tensor)
|
| 123 |
+
probabilities = F.softmax(outputs, dim=1)
|
| 124 |
+
|
| 125 |
+
# Get top predictions
|
| 126 |
+
top_probs, top_indices = torch.topk(probabilities, k=min(top_k, len(self.class_names)))
|
| 127 |
+
|
| 128 |
+
top_predictions = []
|
| 129 |
+
for prob, idx in zip(top_probs[0], top_indices[0]):
|
| 130 |
+
top_predictions.append({
|
| 131 |
+
'class': self.class_names[idx.item()],
|
| 132 |
+
'confidence': prob.item()
|
| 133 |
+
})
|
| 134 |
+
|
| 135 |
+
# Best prediction
|
| 136 |
+
best_pred = top_predictions[0]
|
| 137 |
+
|
| 138 |
+
return {
|
| 139 |
+
'success': True,
|
| 140 |
+
'predicted_class': best_pred['class'],
|
| 141 |
+
'confidence': best_pred['confidence'],
|
| 142 |
+
'top_predictions': top_predictions
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
return {
|
| 147 |
+
'success': False,
|
| 148 |
+
'error': str(e)
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
def get_disposal_instructions(self, class_name):
|
| 152 |
+
"""Get disposal instructions for a waste class."""
|
| 153 |
+
return self.disposal_instructions.get(class_name, "No specific instructions available.")
|
| 154 |
+
|
| 155 |
+
def get_model_info(self):
|
| 156 |
+
"""Get information about the loaded model."""
|
| 157 |
+
return {
|
| 158 |
+
'model_name': 'ViT-Base MAE',
|
| 159 |
+
'architecture': 'Vision Transformer (ViT-Base)',
|
| 160 |
+
'pretrained': 'MAE (Masked Autoencoder)',
|
| 161 |
+
'num_classes': len(self.class_names),
|
| 162 |
+
'device': self.device,
|
| 163 |
+
'model_path': self.model_path
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
# Test the classifier
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
print("π§ͺ Testing MAE Waste Classifier...")
|
| 169 |
+
|
| 170 |
+
try:
|
| 171 |
+
# Initialize classifier
|
| 172 |
+
classifier = MAEWasteClassifier()
|
| 173 |
+
|
| 174 |
+
# Test with a sample image if available
|
| 175 |
+
test_images = [
|
| 176 |
+
"fail_images/image.webp",
|
| 177 |
+
"fail_images/IMG_9501.webp"
|
| 178 |
+
]
|
| 179 |
+
|
| 180 |
+
for img_path in test_images:
|
| 181 |
+
if os.path.exists(img_path):
|
| 182 |
+
print(f"\nπ Testing with {img_path}")
|
| 183 |
+
result = classifier.classify_image(img_path)
|
| 184 |
+
|
| 185 |
+
if result['success']:
|
| 186 |
+
print(f"β
Predicted: {result['predicted_class']} ({result['confidence']:.3f})")
|
| 187 |
+
print(f"π Instructions: {classifier.get_disposal_instructions(result['predicted_class'])}")
|
| 188 |
+
|
| 189 |
+
print("\nπ Top predictions:")
|
| 190 |
+
for i, pred in enumerate(result['top_predictions'][:3], 1):
|
| 191 |
+
print(f" {i}. {pred['class']}: {pred['confidence']:.3f}")
|
| 192 |
+
else:
|
| 193 |
+
print(f"β Error: {result['error']}")
|
| 194 |
+
break
|
| 195 |
+
else:
|
| 196 |
+
print("βΉοΈ No test images found, but classifier loaded successfully!")
|
| 197 |
+
|
| 198 |
+
# Print model info
|
| 199 |
+
info = classifier.get_model_info()
|
| 200 |
+
print(f"\nπ€ Model Info:")
|
| 201 |
+
for key, value in info.items():
|
| 202 |
+
print(f" {key}: {value}")
|
| 203 |
+
|
| 204 |
+
print("\nSuccess!")
|
| 205 |
+
|
| 206 |
+
except Exception as e:
|
| 207 |
+
print(f"β Error: {e}")
|
| 208 |
+
import traceback
|
| 209 |
+
traceback.print_exc()
|