ysharma HF Staff commited on
Commit
cf52cad
·
1 Parent(s): 71eef5e

update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -3
app.py CHANGED
@@ -17,13 +17,15 @@ pipeline_upscale = StableDiffusionUpscalePipeline.from_pretrained(model_id, torc
17
  pipeline_upscale = pipeline_upscale.to("cuda")
18
 
19
  def get_IF_op(prompt, neg_prompt):
 
20
  filepaths = client_if.predict(prompt, neg_prompt, 1,4,7.0, 'smart100',50, api_name="/generate64")
21
  folder_path = filepaths[0]
22
  file_list = os.listdir(folder_path)
23
  file_list = [os.path.join(folder_path, f) for f in file_list if f != 'captions.json']
24
- return file_list
25
 
26
  def get_pickscores(prompt, file_list):
 
27
  #Get the predictons
28
  probabilities1 = client_pick.predict(prompt, file_list[0], file_list[1], fn_index=0)
29
  probabilities2 = client_pick.predict(prompt, file_list[2], file_list[3], fn_index=0)
@@ -33,10 +35,30 @@ def get_pickscores(prompt, file_list):
33
  best_match_image = file_list[max_score_index]
34
  return best_match_image
35
 
36
- def get_upscale_op(prompt, best_match_image):
37
- # let's get the image
 
 
 
38
  low_res_img = Image.open(best_match_image).convert("RGB")
39
  low_res_img = low_res_img.resize((128, 128))
 
40
  upscaled_image = pipeline_upscale(prompt=prompt, image=low_res_img).images[0]
 
41
  return upscaled_image
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  pipeline_upscale = pipeline_upscale.to("cuda")
18
 
19
  def get_IF_op(prompt, neg_prompt):
20
+ print("inside get_IF_op")
21
  filepaths = client_if.predict(prompt, neg_prompt, 1,4,7.0, 'smart100',50, api_name="/generate64")
22
  folder_path = filepaths[0]
23
  file_list = os.listdir(folder_path)
24
  file_list = [os.path.join(folder_path, f) for f in file_list if f != 'captions.json']
25
+ return file_list
26
 
27
  def get_pickscores(prompt, file_list):
28
+ print("inside get_pickscores")
29
  #Get the predictons
30
  probabilities1 = client_pick.predict(prompt, file_list[0], file_list[1], fn_index=0)
31
  probabilities2 = client_pick.predict(prompt, file_list[2], file_list[3], fn_index=0)
 
35
  best_match_image = file_list[max_score_index]
36
  return best_match_image
37
 
38
+ def get_upscale_op(prompt, gallery_if):
39
+ print("inside get_upscale_op")
40
+ # get pickscores
41
+ best_match_image = get_pickscores(prompt, gallery_if)
42
+ # let's get the best pick!
43
  low_res_img = Image.open(best_match_image).convert("RGB")
44
  low_res_img = low_res_img.resize((128, 128))
45
+ # Upscaling the best pick
46
  upscaled_image = pipeline_upscale(prompt=prompt, image=low_res_img).images[0]
47
+ #upscaled_image.save("upsampled.png")
48
  return upscaled_image
49
 
50
+
51
+ with gr.Blocks() as demo:
52
+ with gr.Row():
53
+ with gr.Column:
54
+ prompt = gr.Textbox(label='Prompt')
55
+ neg_prompt = gr.Textbox(label='Negative Prompt')
56
+ b1 = gr.Button('Generate')
57
+ gallery_if = gr.Gallery(label='IF Space outputs')
58
+ b2 = gr.Button("Get the best generation using Pick-A-Pic")
59
+ image_picakapic = gr.Image(label="PickAPic Evaluated Output")
60
+
61
+ b1.click(get_IF_op,[prompt, neg_prompt], gallery_if)
62
+ b1.click(get_upscale_op,[prompt, gallery_if], image_picakapic)
63
+
64
+ demo.launch(debug=True)